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SurfRiver: Flattening Stream Surfaces for
Comparative Visualization

Jun Zhang, Jun Tao, Member, IEEE , Jian-Xun Wang, and Chaoli Wang, Senior Member, IEEE

Abstract—We present SurfRiver, a new visual transformation approach that flattens stream surfaces in 3D to rivers in 2D for
comparative visualization. Leveraging the TextFlow-like visual metaphor, SurfRiver untangles the convoluted individual stream surfaces
along the flow direction and maps them along the horizontal direction of the abstract river view. It stacks multiple surfaces along the
vertical direction of the river view. This visual mapping makes it easy for users to track along the flow direction and align stream
surfaces for comparative study. Through brushing and linking, the river view is connected to the spatial surface view for collective
reasoning. SurfRiver can be used to examine a single stream surface, investigate seeding sensitivity or variability of a family of
surfaces from a group of related seeding curves, or explore a collection of representative surfaces. We describe our optimization
solution to achieve the desirable mapping, present SurfRiver interface and interactions, and report results from different flow fields to
demonstrate its efficacy. Feedback from a domain expert also indicates the promise of SurfRiver.

Index Terms—Flow visualization, stream surfaces, visual transformation, comparative visualization.
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1 INTRODUCTION

Fluid simulation and flow visualization are essential in
many dynamic systems that dominate various physical and
natural phenomena. Among the popular integration-based
visualization techniques, line-based techniques have made
significant advances over the years, providing a sharp con-
trast to surface-based techniques. To construct flow surfaces,
we place particles on a seeding rake or seeding curve in the
given vector field and advect them over time. The collective
traces that the particles follow yield stream surfaces for steady
flow and path surfaces for unsteady flow, depicting the fold-
ing, shearing, and twisting behaviors of the underlying flow.
These surfaces enhance the visual perception of convoluted
flow structures and facilitate an intuitive understanding of
flow patterns, providing illustrative capabilities and im-
proved visualization over simple integral curves [21]. We
refer interested readers to a survey of surface-based flow
visualization [11] for an overview.

Existing methods for surface-based flow visualization
still face three critical challenges in surface generation, vi-
sualization, and analytics. First, surface generation requires
either the knowledge to place seeds for creating informative
surfaces (surface placement) or the solution to choose charac-
teristic surfaces from a pool of densely-traced ones (surface
selection). Second, unlike flow lines, flow surfaces are more
likely to create visual occlusion and clutter. This problem
may be due to multiple surfaces that occlude one another,
a single surface that produces strong self-occlusion, or a
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combination of both [11]. This challenge must be addressed
so that insightful visualizations can be generated. Third,
prior works on flow surface visualization are mostly auto-
matic. Although the automated approach has its benefits in
many scenarios, users are often given standard interaction
options, which offers little opportunity to flexibly query the
visualizations or freely explore the results.

In this paper, we advocate a visual transformation ap-
proach for the comparative study of stream surfaces. We
introduce SurfRiver that addresses the need for visual explo-
ration of a single surface and comparative visualization of a
family of surfaces by transforming them into the TextFlow-
like visual representation [10]. By flattening and aligning
surfaces in 3D to rivers in 2D, it allows clear examination and
comparison of multiple surfaces. SurfRiver consists of two
views, spatial surface view and abstract river view. The spatial
surface view shows the stream surfaces in the original 3D
space. The abstract river view displays the flattened surfaces
as rivers in the 2D space. The two views are dynamically
linked via brushing and linking to enables users to gain
a comprehensive examination of surfaces from different
perspectives. In terms of interaction, SurfRiver supports the
exploration of the river view via different mapping schemes
and the alignment of surfaces for better observation of their
3D spatial relationships.

The contribution of this work is as follows. First, we
design a novel visual transformation solution that flattens
stream surfaces to support clear visualization and analytical
exploration. Second, we propose an optimization scheme
and visual mappings that build the intuition between the
spatial surface view and the abstract river view. Third, we
develop a suite of interactions to enable the exploratory and
comparative study of single and multiple surfaces. Fourth,
we present a list of cases to demonstrate our solution’s
efficacy and solicit feedback from a domain expert.
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2 RELATED WORK

In the context of flow visualization, we review related work
on surface placement and selection, surface construction,
surface rendering, and comparative visualization.

Surface placement and selection. An early work pre-
sented by van Wijk [35] generates stream surfaces implicitly
where continuous scalar values are specified for boundary
voxels and scalar values for interior voxels are computed
through backward streamline tracing. Stream surfaces are
then constructed through isosurface extraction in the scalar
field. Following this implicit approach, Cai and Heng [8]
constructed the principal stream function based on normal
vectors to the principal stream surface at velocity points.
The principal stream function is a scalar field that describes
the velocity direction of the flow field and can be visualized
through volume rendering. Edmunds et al. [12] performed
hierarchical clustering of local flow properties to locate
seeding positions associated with important flow structures,
from which seeding curves are generated through the cur-
vature field for stream surface propagation. Martinez Esturo
et al. [27] favored surfaces where the flow is aligned with
principal curvature directions. Simulated annealing was used
to determine a stream surface that is globally optimal in
terms of quality measures. Schulze et al. [32] selected a set
of globally-optimal, mutually-distant stream surfaces that
optimizes global stream surface quality measures. Other
works find surfaces that meet specific desired properties
best, for example, aligning with the flow or orthogonal to
it [13], minimizing stretch [3], or seeding along selected ten-
sor lines of the similarity tensor field [7]. Tao and Wang [33]
advocated a sketch-based approach that allows users to iter-
atively draw strokes directly on densely-seeded streamlines
to identify suitable seeding curves and guide stream surface
placement. Han et al. [19] leveraged an autoencoder to learn
latent stream surface features and projected these feature
descriptors into a 2D space for interactive surface clustering
and customized representative selection. In this work, in-
stead of directly tackling surface placement or selection, we
study seeding sensitivity or variability of a family of stream
surfaces produced from a group of related seeding curves.
Besides, we also consider a set of representative surfaces in
the investigation.

Surface construction. Hultquist [20] was the first to
present the solution to stream surface construction based
on the front-advancing approach. His algorithm advances
a seeding rake (i.e., straight seeding curve) as the front
to generate stream ribbons from adjacent streamline pairs.
Scheuermann et al. [30] presented a tetrahedra-based stream
surface algorithm that utilizes an analytic flow solution for
linear interpolation over tetrahedral grids. Their approach
can automatically adapt to the grid resolution. Garth et
al. [16] employed an arc-length based solution to streamline
integration and considered additional criteria such as sur-
face curvature and singularities for front refinement. Their
solution can handle flows of inhomogeneous magnitude
that are not well handled by Hultquist’s algorithm [20].
Garth et al. [15] advocated a two-step approach for surface
generation. The two steps separate surface approximation
(which generates a skeleton of the integral surface) from
surface representation (which generates a well-conditioned tri-

angulation). Other surface construction techniques include
point-based [29] and quad-based [28] approaches. Based on
a scaled version of the flow field, Schulze et al. [31] de-
signed an integrator that enforces the flow-orthogonal front
line to generate well-behaved quad-dominant meshes. In
this work, we follow the easy integral surface construction
method proposed by McLoughlin et al. [28] to generate
stream surfaces from steady vector fields.

Surface rendering. Flow surfaces can be rendered di-
rectly as mesh geometry with lighting and color mapping.
They can also overlay with glyphs (e.g., arrows), integral
lines (e.g., streamlines), or textures (e.g., LIC textures) to
improve the perception of surface flows. Introducing illus-
trative techniques to surface rendering can reduce visual
occlusion and clutter, and enhance the depth and spatial
perception of flow features and structures. Born et al. [5]
used illustrative surface streamlines to highlight flow di-
rections and singularities while contour lines and half-toning
were employed to depict the shape of stream surfaces.
Hummel et al. [21] considered transparency and texturing to
enhance the shape and directional information with screen-
space curvature approximation. Carnecky et al. [9] enabled
nonlocal transparency enhancement and achieved expres-
sive surface rendering using the illustration buffer. Günther
et al. [17] studied opacity optimization for surfaces and further
extended this solution to handle all geometry types (points,
lines, and surfaces) in a single framework [18].

Comparative visualization. Researchers have investi-
gated transforming flow lines and surfaces for comparative
visualization and visual reasoning. Verma and Pang [36]
argued the need for comparative flow visualization, classi-
fied three levels (image-level, data-level, and feature-level) of
comparison, and presented their solutions on streamline
and stream ribbon comparison. Curved planar reformation
(CPR) [22], [23] and curved surface reformation (CSR) [2] were
used to visualize tubular structures such as blood vessels.
Similar works have been done to enable comparative visu-
alization of 1D flow lines via volume reformation [24] and
line straightening [1]. More abstract representation changes
transform flow lines, features, and space-time regions into a
tree or graph representation. Such examples include Hemo-
Vis [4] for representing coronary artery trees as well as
FlowGraph [25], [26] and semantic flow graph [34] for
exploring general fluid flows. However, comparative 2D
surface visualization has not been well investigated in this
context. Brambilla et al. [6] reformatted time surfaces into
a planar space to enable juxtaposition, superimposition, and
side-by-side comparative visualization. The third dimension
is used to stack formatted surfaces. In contrast, using a river
metaphor, we flatten stream surfaces into rivers where the
flow direction always follows the horizontal direction, and
multiple surfaces are stacked along the vertical direction for
comparative visualization.

3 SURFRIVER OVERVIEW

The rationale to design SurfRiver stems from highly-
sensitive surface seeding in real-world flow fields. For line
seeding, small perturbations in the seeding location could
lead to dramatically different streamlines. Surface seeding
has a much higher degree of freedom to vary as the variation
in location, length, and shape of seeding curves would
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Fig. 1: Illustration of the mapping of flow features of a
stream surface to visual attributes of a river in SurfRiver.
The trend lines indicate that along the flow direction, both
curvature and torsion values decrease for (1), both values
increase for (2), and the curvature value increases while the
torsion value remains the same for (3).

lead to different stream surfaces. Our primary goal is to
enable visual examination and exploration of such a family
of stream surfaces to study seeding sensitivity or variability.
Besides mapping those stream surfaces that are more likely
to be similar to each other, we also explore the mapping of
a set of representative surfaces, which can be obtained from
existing works [19], [32].

As sketched in Figure 1, similar to TextFlow [10], where
the horizontal direction represents time, that direction of
SurfRiver represents the flow direction (i.e., the integration
time for steady flow). Each river in SurfRiver represents a
stream surface, and the river always flows from left to right.
Along the vertical direction, a river widens or narrows in
accordance with the timelines (i.e., advancing fronts) to de-
pict the varying widths of the surface at different time steps.
We map the boundary streamlines to the river’s boundary,
and the average curvature and torsion values of the timelines
to a trend line at the center of each river branch indicated by
the amplitude and frequency of the wave pattern, respectively.
Finally, we optionally display ellipses along the trend line to
show additional flow information.

This added TextFlow-like view brings a clear advantage:
we essentially “flatten” 3D stream surfaces to 2D rivers,
which reduce or eliminate occlusion. SurfRiver allows users
to examine a family of surfaces and investigate when, where,
and how they differ from each other. To align multiple
rivers in SurfRiver, we take their seeding curves as the
reference, so that stream surfaces are aligned according to
their spatiotemporal arrangement. We use a linked spatial
view to examine the surface family in 3D.

4 SURFRIVER LAYOUT

SurfRiver aims at unfolding 3D stream surfaces on a 2D
plane. The horizontal axis of SurfRiver preserves the tempo-
ral order of the timelines and aligns the timelines according
to their similarities, and the vertical axis preserves the
spatial distance between aligned timelines. We achieve this
goal by formulating the creation of SurfRiver as a graph
layout problem. Each node in the graph represents a timeline
of a stream surface, and each edge enforces a constraint
between two timelines, which will be elaborated in this
section. Unlike the conventional 2D graph layout algorithm,
we compute each node’s x-coordinate and y-coordinate
separately in two stages: horizontal alignment and vertical
ordering. For each stage, we solve the respective coordinates
by minimizing an energy function. Once the coordinates

are determined, we extend the node from a point to a line
segment and connect the line segments’ endpoints to form
the river’s boundary.

At the first stage, horizontal alignment “warps” the
surfaces non-linearly along the x-axis, so that the nodes cor-
responding to similar timelines have similar x-coordinates
(the layout along the x-axis is a compromise between tem-
poral alignment and similarity alignment). The similarity
of two timelines may be given by their spatial proximity
or similarity of other features (e.g., average curvature and
torsion values). Horizontal alignment builds the correspon-
dence between timelines on different surfaces along the
x-axis. At the second stage, vertical ordering places the
nodes along the y-axis to resemble the spatial relationships
between aligned timelines. Two timelines are considered
to be aligned if their x-coordinates computed at the first
stage are similar. Additional constraints are considered to
maintain a smooth flow outline and reduce visual clutter.

Figure 2 gives an overview of the input timelines to
each energy term that we will explain next for horizontal
alignment and vertical ordering. In the following, we use li
to denote the i-th timeline, and t(li) to denote a time step
of li with respect to its corresponding seeding curve, a.k.a.
the initial timeline (t(li) = 0 if li is a seeding curve). We
further use xi and yi to denote the x- and y-coordinates of
the node corresponding to li, respectively. For simplicity, we
will refer to xi/yi as “the x/y-coordinate of timeline li”.
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Fig. 2: Illustration of the input for each energy term in
horizontal alignment and vertical ordering.

4.1 Horizontal Alignment
For horizontal alignment, we consider three energy terms:
similarity alignment, temporal alignment, and temporal flipping
penalty. Similarity alignment aims to achieve horizontal
proximity for similar timelines. Temporal alignment main-
tains the order of timelines on the same surface. Temporal
flipping penalty is applied when the order of timelines is
violated.

Similarity alignment. The similarity alignment energy
term Es horizontally pulls nodes on the same surface closer
if their corresponding timelines are similar. Specifically, this
term enforces a timeline to share the same x-coordinate
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in SurfRiver with its most similar timeline, as shown in
Figure 2. Formally, this can be expressed as

Es =
∑

li∈S,lj /∈S

ws(xi − xj)2, where j = argmin
k

δik, (1)

where S denotes a stream surface, ws is the weight for simi-
larity assignment, and δik is the distance between timelines
li and lk. If the spatial proximity is considered, we use the
mean of closest point distances (MCPD) between li and lk. If
the similarity of features is considered, we use the Jensen-
Shannon divergence (JSD) between the curvature and torsion
distributions of li and lk.

Temporal alignment. As shown in Figure 2, the temporal
alignment energy term Et is used to enforce a constant
horizontal gap between two neighboring timelines on the
same surface S

Et =
∑

li,lj∈S
(1−ws) ((xi − xj)− d)2 , where t(li)−t(lj) = 1,

(2)
where d is a constant separation distance. We set d = 4.0 for
all data sets we experimented with. Note that we use 1−ws

as the weight of this term, so that adjusting ws leads to a
desired balance between similarity alignment and temporal
alignment.

Temporal flipping penalty. Temporal flipping refers to
an undesired layout where two timelines appear in reversed
order along the x-axis, as shown in Figure 2. This often
happens in a complex flow or around a vortex where two
timelines are temporally distant but spatially close. In this
case, we apply a large penalty to flip the timelines back to
their correct temporal order

Ef =
∑

li,lj∈S
α ((xi − xj)− γ)2 ,

where t(li)− t(lj) = 1 and xi > xj , (3)

where α is a relatively large constant to enforce the con-
straint, and γ is a small constant, to simulate spatial close-
ness. In this paper, we set α = 1000 and γ = 0.1 for all data
sets we experimented with.

As shown in Figure 3 (a), surfaces A and B are traced
from two very close and similar seeding curves shown
on the left. As A goes through the obstacle located at the
center of the domain, it starts twisting while B continues
to flow more smoothly. With temporal alignment shown
in Figure 3 (b), the blue timeline on A is aligned with the
orange timeline on B, even though the orange timeline on B
is spatially close to the black one on A (refer to Figure 3 (a)).
By enabling similarity alignment with MCPD, we can align
the orange and black timelines, as shown in Figure 3 (c).

4.2 Vertical Ordering

For vertical ordering, we consider two energy terms: spatial
proximity ordering and river smoothing. Spatial proximity
ordering preserves the proximity of aligned timelines along
the vertical direction. River smoothing reduces the differ-
ence between neighboring timelines.

Spatial proximity ordering. As shown in Figure 2, the
spatial proximity ordering energy term Ep enforces the

seeding

curves

timelines

(a)

(b)

(c)
Fig. 3: Aligning two stream surfaces flowing through an
obstacle of the square cylinder data set. (a) the surface view.
(b) and (c) the corresponding river views with temporal
alignment and similarity alignment, respectively.

y-coordinates of aligned timelines to reflect their original
MCPD in the 3D space

Ep =
∑

li,lj∈S
wij (|yi − yj | − (δij + cijλ))

2
, where

wij =
1

δ2ij

1√
2π

exp
(
−|xi − xj |

2

)
and |xi − xj | ≤ ri, (4)

where S denotes the family of surfaces or the set of represen-
tative surfaces, |yi − yj | is the absolute difference between
yi and yj , δij is the distance between timelines li and lj
given by their MCPD, and wij is a weight given by δij
and the horizontal distance |xi − xj |. λ is a constant gap to
separate different river branches (due to flow divergence). λ
is modulated by cij , which is the vertical ordering difference
of two rivers when li and lj are on different rivers, or a
constant when li and lj are on different branches of the
same river. ri is a cutoff radius to reduce the number of
constraints. In this paper, we set ri = 0.2maxk∈n δik, where
li ∈ S, lk ∈ S′, S ∈ S, S′ ∈ S, and n is the number
of timelines on S′. The first part of wij based on δij is
included in following stress majorization [14]. The second
part of wij weights the influence of a timeline based on the
horizontal distance using a Gaussian function. Intuitively,
when |xi − xj | between timelines li and lj increases, their
relative vertical order becomes less obvious. Therefore, we
reduce the weight to loosen the constraint. λ is a parameter
to enforce a constant vertical gap between river branches.
We use λ = 0 when only the vertical order of timelines
is considered. In other cases, users may specify λ for their
desired visual effect. A small λ preserves the 3D spatial
relationships in the 2D space, while a large λ increases gaps
between river branches to reduce visual clutter.

Figure 4 shows an example with two different λ values.
We can see that the river mapping can be adjusted to reduce
or avoid branches crossing. When only the spatial proximity



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

seeding curve

(a)

seeding 

curve

(b)

seeding

curve

(c)
Fig. 4: The impact of λ using the crayfish data set showing a
complex stream surface in (a) and the corresponding rivers
with crossed and separated branches, respectively, in (b) and
(c). For (b), λ = 0. For (c), λ = 9.

of timelines is considered, river branches tend to cross with
each other, as shown in Figure 4 (b). Timelines on the same
branch are prone to be pulled towards timelines residing in
diverse regions, thus causing the entanglement. By setting λ
to a large value, usually 100 times of the MCPD, we enforce
timelines to maintain a constant distance between them on
sibling branches, as shown in Figure 4 (c).

River smoothing. The river smoothing energy term Er

avoids sharp turns along a river and maintains smooth river
boundaries for aesthetic purposes. It also helps enhance
perception, as fluctuation in rivers may lead to difficulty
in identification, which prevents users from tracking local
features of the original surfaces. As shown in Figure 2, this
term minimizes the vertical distance between neighboring
timelines as

Er =
∑

li,lj∈S
wr (|yi − yj | − µ)2 , where t(li)− t(lj) = 1,

(5)
where wr is the weight for river smoothing, and µ is a very
small constant to enforce vertical proximity. In this paper,
we set µ = 0.00001 for all data sets we experimented with.

As shown in Figure 5 (a), five stream surfaces are traced
with their flow direction pointing from the domain’s center

to the boundary as indicated by the arrows. No divergence
takes place in this case. The stack-like 3D spatial relationship
is reflected in the 2D river view, as shown in Figure 5 (b),
where these rivers are arranged from top to bottom. As
the stream surfaces flow outward, they gradually separate.
Therefore, the rivers’ right ends slightly deviate from their
left ends as they are pushed around by each other.

(a) (b)

Fig. 5: Vertical ordering using the tornado data set. Spatial
ordering of stream surfaces (a) is kept in the river view (b).

4.3 Energy Minimization

Horizontal alignment. The energy function of horizontal
alignment can be minimized using a linear solver. The en-
ergy terms Es, Et, and Ef can be written as a series of linear
equations, forming a sparse overdetermined linear system
in the form of Ax = b. Although an exact solution usually
does not exist for this kind of system, solving the linear
system in the least square sense can minimize these energy
terms. Specifically, a term in the form of w((xi − xj) − d)
is represented as a row in the matrix A: the i-th element in
this row is w, the j-th element is −w, and all other elements
are zero. The corresponding element in b is wd.

Vertical ordering. The energy function of vertical or-
dering cannot be minimized using the linear solver due
to the absolute difference between the unknown variables.
Unlike horizontal alignment, where the order of timelines is
enforced by their temporal relationships, the vertical order
of timelines is unknown. Thus, a linear solver is unlikely
to achieve an optimal vertical order of timelines without
considering the absolute difference. Therefore, we use stress
majorization [14], which minimizes loss functions in the
form of

∑
wij(|yi − yj | − δij)

2. However, we find that
stress majorization is often numerically unstable, as the
1D layout problem allows limited room for the nodes to
switch their order. This problem may not be feasible to solve
theoretically. In our experiment, we adopt the following
empirical strategies to improve the solution’s quality.

First, we solve the vertical ordering problem in two
rounds. In the first round, we aim to solve a simplified
energy function with λ = 0, which means that the constant
separation gap is not considered. The second run uses the
actual λ to separate the river branches. The y-coordinates
are initialized by translating the branches from the first
round’s solution. Each branch is translated by a distance
based on their vertical order. With the new initial values,
we use stress majorization again to minimize the actual
energy function. Second, we find that 1D stress majorization
is likely to shift the positions uniformly without changing
their relative distance. This issue may delay convergence
and lead to numerical overflow. Therefore, we eliminate
the shifting by deducting the average from the positions
after every iteration of stress majorization. Third, with the
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Fig. 6: SurfRiver consists of three parts: parameter panel, surface view, and river view. The parameter panel includes shared
parameters for controlling parameters of both views and river parameters for adjusting desired river layouts. The surface
view and river view are synchronized via brushing and linking to enable analytical reasoning.

vertical order decided, the signs of the absolute difference
are known. The energy terms Ep and Er can be converted
to a linear system. We find that using the linear solver with
the given signs often further minimizes the energy.

5 SURFRIVER INTERFACE AND INTERACTION

As shown in Figure 6, the SurfRiver interface consists of two
coordinated views: a surface view that renders the stream sur-
faces in the original 3D space, and a river view that displays
the corresponding “flattened” rivers in the 2D layout. Users
can scale, rotate, and translate the surface view, and scale
and translate the river view. Both views are dynamically
linked together via brushing and linking. The majority of
interaction begins with the river view due to its 2D nature
for easy navigation and convenient exploration.

5.1 Visual Mapping
For each stream surface in the surface view, a river is
created in the river view. We visually pair the surface and its
corresponding river by rendering them with a unique color.
In addition, labels are added for clear correspondence. All
seeding curves are displayed with two endpoints drawn for
differentiation from other timelines. Ideally, the river should
serve as a concise visual representation, allowing users to
obtain the original surface’s shape information and make
mental connections between the river and the surface.

Trend line. To provide the shape information on a 2D
river, we visually encode the average curvature and torsion
values following the timelines as the trend line by deform-
ing each river branch’s center line into a sine wave. The
amplitude of the sine wave represents the curvature, and
the frequency represents the torsion. Intuitively, the laminar
flow has smooth and flat curves, while the more complex
flow exhibits larger amplitudes and higher frequencies.
Figure 7 shows such an example where the segments at
both ends of the trend line reflect the curly nature of the un-
derlying stream surface. Furthermore, we optionally display

ellipses along the trend line to show additional information.
If this feature is turned on, we display velocity magnitude
(by default) or vorticity magnitude. A constant sample rate
for the ellipses is selected for each data set, depending on
the number of timelines. The sample rate is usually between
three and five (meaning that we display an ellipse for every
three to five timelines along the trend line). In such an
ellipse, the length of the major axis indicates the average
magnitude along the corresponding timeline, while that of
the minor axis keeps the same for all ellipses. We empirically
choose the length of the minor axis so that all ellipses are
visible and multiple ellipses can be placed along the river.

focal

vertex
seeding

curve

flow

direction
halo

(a)

focal

vertex

trend

line

seeding

curve

halo

velocity

magnitude

(b)
Fig. 7: Trend line using the five critical points data set. (a) a
stream surface with curls at both ends. (b) the corresponding
river with trend line and ellipse details.

Mini-map. As shown in Figure 6, we display a mini-map
in the river view to provide a global picture of the rivers
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when zoomed in. The actual position of the mini-map can
be adjusted by users to avoid or reduce the overlap with
the rivers drawn. The currently displayed range in the river
view is shown by a bounding box, for which users can drag
to pan around for quick navigation.

Branch labeling. A key challenge of examining stream
surfaces is the difficulty in observing flow divergence in the
convoluted 3D spatial view. We label the branches in both
views to build the correspondence between the surface and
river branches. Each river is hierarchically structured as a
k-way tree with each node being a branch, as shown in Fig-
ure 10. We define the branch containing the seeding curve
as the root of the tree. All labels’ background color from the
same surface/river uses the corresponding surface/river’s
color. The root branch is labeled using a single letter (e.g.,
B) in the same way as we label the entire river as both labels
would not be displayed simultaneously. The label of a child
branch appends a number to the label of its parent. For
example, C1 denotes the first child branch of C, and D1-
2 denotes the second child branch of D1.

How to read river view? We describe how to read the
2D river view and its encoded information to identify inter-
esting features on the 3D stream surfaces. First of all, each
river corresponds to a surface of the same color (Figure 6).
The river always flows from left to right. The length of
the river matches the extent of the surface (assuming the
same integration method and step size are used) along the
flow direction. One can loop through the timeline to show
the correspondence between river segments and surface
regions, along with the added labeling information. The
river branching shows where and how the surface diverges
(e.g., surface A in Figure 6). Look for where the river forms
multiple branches (e.g., the branches near the seeding curve
in Figure 11 (b)), indicating interesting and complex flow
divergence around the surface. Branches on the same side
of the seeding curve (e.g., branches D2 and D1-2 in Fig-
ure 10 (b)) imply that the corresponding flow joins (on the
upstream side) or splits (on the downstream side). The trend
line provides the average curvature and torsion information
along the timeline (Figure 7). Look for high amplitude and
frequency segments of the trend line for the corresponding
surface regions with high curvature and torsion values (e.g.,
both ends of the surface in Figure 7). The ellipses along the
trend line reveal velocity or vorticity magnitude variation
along the corresponding timelines. Look for more stretched
ellipses (e.g., Figure 7) for the corresponding surface regions
with high velocity or vorticity magnitude.

5.2 Multilevel Highlighting

Besides standard brushing and linking that builds the con-
nections between the surface and river views, we provide a
set of highlighting functions to further enhance the mental
connections and enable effective visual reasoning between
the two views at the river-, branch-, and vertex-levels. Users
specify these three levels of highlighting by mouse clicking
while pressing the R, B, or V keys, respectively. Different
highlighting levels can coexist except for highlighting a
branch containing the seeding curve and highlighting the
same river to which the branch belongs. When this happens,
only the latest highlighting will be in effect.

River highlighting. When a river or its corresponding
surface is highlighted, the river becomes the focal river (e.g.,
river D shown in Figure 6). The non-focal surfaces and rivers
will be deemphasized by reducing the opacity in the surface
view and color saturation in the river view. Furthermore,
the non-focal rivers are automatically aligned with the focal
one via similarity alignment. Specifically, for the similarity
alignment energy term Es, the focal river’s constraints are
given a higher weight. This allows the similarity between
the focal and other rivers to be preserved at a higher priority.
Note that this setting may consequently change timeline
correspondence and vertical ordering.

Branch highlighting. When a river branch or its cor-
responding surface branch is highlighted, their boundaries
in both views are highlighted. We add a boundary to the
corresponding labels; the labels’ boundary color follows
that of the river/surface branch’s boundary. In addition,
the flow direction on the branch is displayed in the surface
view. Similar to river highlighting, we deemphasize the
non-highlighted surface and river branches by reducing
opacity and color saturation, respectively. We allow users
to simultaneously highlight multiple branches on the same
river or different rivers for better referencing. For exam-
ple, in Figure 10, multiple river branches A, A3, B, C1,
C2, D1-2, and D2 are highlighted. To help examine the
temporal evolution over a branch, we highlight in both
views, the timeline under the cursor on this branch and the
corresponding timelines on its sibling branches. By moving
the mouse along the branch, users may observe how the
timelines evolve on these sibling branches. Figure 11 shows
such an example.

Vertex highlighting. While pressing the V key, users can
click on a river to identify a focal vertex (when multiple
rivers overlap, users simply mouse over to decide which
one should be on top). They can also press the same key and
click on a surface to specify the focal vertex in the maximum
intensity projection manner (i.e., we take the vertex of the
highest curvature value). The focal vertex is highlighted in
both views, and the flow direction is marked on the focal
vertex in the surface view. Figure 7 (b) shows a halo centered
at the focal vertex in the river view. To best highlight the
focal vertex, we automatically deemphasize the correspond-
ing branch to which a focal vertex belongs regardless of the
branch’s highlighting status. In the surface view shown in
Figure 7 (a), the transparency of a vertex on the surface
is adjusted according to its geodesic distance to the focal
vertex based on a sigmoid function. To approximate the
geodesic distance efficiently, we run the computation on
a mesh downsampled by two from the original surface
mesh using Dijkstra’s algorithm with the focal vertex as
the single source. Similar to branch highlighting, multiple
vertices on the same or different branches can be highlighted
simultaneously.

6 RESULTS AND DISCUSSION

6.1 Data Sets and Surface Sampling

Data sets and timing. We have explored several data sets
listed in Table 1. The timing was collected on a PC with
an Intel Core i9-9900K CPU running at 3.6GHz, 64GB main
memory, and an NVIDIA GeForce RTX 2080 Ti graphics card
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TABLE 1: The list of data sets experimented. The numbers reported for branches, timelines, and vertices are the average
ones generated from each family or set of stream surfaces. The time is calculated by averaging results gathered from 150
runs of the energy minimization process.

horizontal vertical ordering (sec)
data set spatial dimension # branches # timelines # vertices alignment (sec) stress majorization linear solver

Bénard flow 128× 32× 64 42 1,349 17,037 0.086 0.027 0.621
crayfish 322× 162× 169 94 1,794 43,490 0.130 0.038 2.409

five critical points 51× 51× 51 17 403 4,683 0.016 0.020 0.042
hurricane 500× 500× 100 13 387 16,998 0.041 0.037 0.227

square cylinder 192× 64× 48 38 1,207 27,143 0.071 0.022 0.508
tornado 64× 64× 64 5 553 13,780 0.019 0.029 0.076
vessel 280× 260× 160 42 1,836 120,911 0.145 0.022 1.749

(a) (b)

(c)
Fig. 8: SurfRiver of the five critical points data set. (a) and (b)
stream surfaces traced from the same seeding curve using
the fourth-order Runge-Kutta and first-order Euler meth-
ods, respectively. (c) the river view of these two surfaces
with λ = 91 and wr = 0.96.

with 11GB GDDR6 memory. A run of stress majorization
takes about 100 iterations, and that of linear solver takes
about 2,000 iterations. The time for vertical ordering using
linear solver is larger than that using stress majorization. A
set of downsampled data was fed to stress majorization to
decrease the response time while the linear solver requires
all of the data to achieve a smooth river layout.

Parameter setting. The desired river layout determines
the choice of parameters. Although each data set’s specific
parameter settings may differ slightly, the general rule ap-
plies to most cases. For horizontal alignment, ws is usually
set to 0 since temporal alignment is our preferred alignment
method. If similarity alignment is desired, setting ws to 1
would achieve the most prominent similarity relations. A
mix of temporal alignment and similarity alignment tends
to average the effect parameter settings exert on the river
layout. For vertical alignment, to attain a relatively straight-
ening river layout (i.e., the river transits smoothly from
timeline to timeline without experiencing sharp changes),
we recommend a value between 0.95 and 0.99 for wr . The
more complicated (i.e., the complexity of timeline relations)
the case is, the higher wr value should be. If one wants

to separate rivers (e.g., Figure 10), the value of λ should
increase. A value in [5, 100] for λ would satisfy, depending
on the complexity of branches crossing with each other. For
the rest of the paper, λ = 0 and ws = 0 if not mentioned.

Surface sampling. Assume that we start with an existing
seeding curve p  q, which is known to yield a suitable
stream surface (e.g., borrowing the representative surface
selection results from FlowNet [19]). Based on this seeding
curve, we seek to create a group of seeding curves, which
leads to a family of stream surfaces. There are multiple ways
to do so. For example, we can fix one endpoint p, and sample
on a small sphere centered at the other endpoint q. We can
also rotate the seeding curve along its midpoint following
a particular direction or within an angle range. Besides, we
can lengthen or shorten the seeding curve either straight-
forwardly (for the seeding rake) or in a specific direction
(e.g., the principal direction [27] or binormal direction [33]).
Finally, all these could be generalized to anisotropic cases by
considering the underlying flow properties such as critical
point locations, flow entropy, or divergence.

6.2 Results

We discuss several cases with both representative surfaces
and surface families to demonstrate the efficacy of SurfRiver.
For the visual exploration of SurfRiver, please refer to the
accompanying video.

Five critical points. In addition to mapping a family of
stream surfaces that are more likely to be similar to each
other (e.g., Figure 5), we also explore mapping a set of
representative surfaces. The critical question is how to align
multiple rivers for these surfaces as no standard reference
exists now. In Figure 6, we show an example where the
alignment of seven representative surfaces A to G is based
on the seeding curves. Similarity alignment uses the MCPD
of timelines. We can see that the spatial relationships among
stream surfaces in 3D are preserved among rivers in 2D. For
example, B, C, and D are neighbors, and B is in between C
and D, which are consistent in both views. Furthermore, at
the two ends of rivers B and D, their trend lines are rather
bumpy (high amplitude and frequency). This indicates that
the corresponding flow regions have high curvature and
torsion values and are worth further exploration.

Figure 8 shows a side-by-side comparison of two stream
surfaces generated from the same seeding curve but using
different integration methods. The corresponding river view
shows that the two rivers have very different extents. Even
though both integration methods use the same step size,
the first-order Euler method is less accurate in resembling
the spirals, resulting in much fewer timelines. The river
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(a) (b) (c)

Fig. 9: SurfRiver of the hurricane data set. (a) the surface view of two stream surfaces constructed from two vector fields
with the same seeding curve. (b) the river view based on temporal alignment where ws = 0. (c) the river view based on
similarity alignment using JSD where ws = 1. For (b) and (c), λ = 89 and wr = 0.98.

(a)

(b)
Fig. 10: SurfRiver of the Bénard flow data set showing four
representative stream surfaces in (a) and the river view in
(b) with λ = 31 and wr = 0.95.

view also reveals the far more complex branching structure
when tracing the surface using the fourth-order Runge-
Kutta method, which is not noticeable by just comparing
the surfaces.

Hurricane. Besides standard similarity alignment via
MCPD, we can also align timelines according to their feature
distributions using JSD. Such an example is given in Figure 9
using the hurricane data set. Instead of using a single time
step of the data set, we now use the unsteady vector field’s
multiple time steps and place the same seeding curve to
generate the stream surfaces from different time steps. For
this example, the goal is to capture the trajectory of the hur-
ricane’s eye. The results with two stream surfaces are dis-
played here, where the orange/green surface corresponds to
an early/later time step. For temporal alignment, as shown
in Figure 9 (b), it is not apparent to link the hurricane’s
eye to the corresponding regions on both rivers because

the eye’s position shifts over time. For similarity alignment
using JSD, as shown in Figure 9 (c), the black timeline on the
green river is now automatically aligned with the orange
timeline on the orange river because they have the most
similar curvature and torsion patterns. Figure 9 (a) confirms
that both timelines correspond to the evolving trajectory of
the hurricane’s eye at their respective time steps. Note that
the displayed orange and black curves are timelines instead
of streamlines. Therefore, these curves are not necessarily
closed or form a helical configuration.

Bénard flow. Figure 10 shows the results of the Bénard
flow data set using representative stream surfaces with
several river branches highlighted. We find that it is easier
to track the evolution of timelines using the river view.
For example, in the surface view, we can only observe a
swirling pattern on surface B. But in the river view, we
can see that the seeding curve splits into two branches
when tracing backward, suggesting that a diverging point
is encountered when the seeding curve moves closer to the
domain’s boundary. As another example, surface D exhibits
two swirls (i.e., branches D2 and D1-2). It is not clear
whether the flow will leave one swirl and enter the other.
The river view shows that both branches are formed by
splitting the seeding curve along the flow. This implies that
the flow will not move from one swirl to the other, as both
branches appear on the same side of seeding curve in the
river view.

Additionally, the layout of the rivers resembles the spa-
tial relationships among the branches. For example, in the
surface view, branch A3 is close to the other three surfaces.
The river view shows a consistent layout, where A3 is pulled
downward to stay close to the other rivers. C1 and C2 are
two sibling branches deviated from C to the two sides of
the domain’s boundary in the surface view, or to the right
end of the river view. Unlike C2, C1 continues to entangle
with a newly involved branch D1-2, thus pulling these two
branches closer.

Square cylinder. In Figure 11, we show the result of
a single, complex stream surface from the square cylinder
data set. We specifically place a seeding curve around the
domain’s center where the obstacle in the shape of a cylinder
is located. As we can see, the seeding curve diverges quickly
along both upstream and downstream directions, presenting
intricate spatiotemporal relations. While the result is not
apparent or even hidden in the surface view, SurfRiver can
help us perform effective visual reasoning via the river view
to glean insights. One insight we observe is that temporally
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(a)

(b)
Fig. 11: SurfRiver of the square cylinder data set showing a
stream surface in (a) with the seeding curve placed at the
domain’s center and the river view in (b) with wr = 0.97.

(a) (b)

Fig. 12: SurfRiver of the square cylinder data set showing
a group of slightly rotated seeding curves leads to very
different stream surfaces in (a) and the river view in (b)
with λ = 43 and wr = 0.95.

close timelines could be spatially distant. For example, the time-
line on branch A3-1-2-1, which is approaching the domain’s
boundary, shares an equal time step with the timeline on
A3-1-2-2, which is still revolving at the domain’s center.
Another insight we observe is that spatially close timelines
could be temporally distant. For example, the seeding curve
on A is spatially close to the timeline on A3-1-2-2. However,
A3-1-2-2 has experienced four diverging stages from the
seeding curve (i.e., from A to A3 to A3-1 to A3-1-2 to A3-
1-2-2), while remaining at the domain’s center.

Furthermore, SurfRiver allows users to track the exact
flow behavior in the swirl behind the cylinder. The surface
view only reveals that the flow may leave the swirl in both
the forward and backward directions, but it is impossible
to track how many branches leave, when they leave, and
whether there is still any branch staying in the swirl. In
contrast, the river view delivers this information clearly.
When examining the branches moving forward (on the
right side of the river), we can see that branch A3-1-2-2
and its ancestors are distant from the other branches. By
highlighting the branches, we find that A3-1-2-2 is the only
branch that remains in the swirl. We can also easily track

inlet

(a)

(b)
Fig. 13: SurfRiver of the vessel data set showing a stream
surface seeded from the inlet in (a) and the river view in (b)
with wr = 0.95.

that branch A3-1 diverges twice, and two of its descendants
are the last two branches that leave the swirl. All the other
branches leave the swirl at a similar time, soon after the
seeding curve is released. The branches moving backward
show a similar pattern. The branches staying in the swirl
appear at the lower part, while the ones leaving the swirl
(for example, A5-2-1) move upward in the river view.

Figure 12 shows an example of using SurfRiver to study
seeding sensitivity. Four seeding curves are generated from
varying rotation angles along the same midpoint. We can
see that these slightly different curves lead to very different
surfaces. While surfaces B and C are simple, surfaces A
and D are complex, forming interesting flow patterns after
passing the obstacle. The corresponding four rivers confirm
the observation and allow us to explore different branches
of surfaces A and D.

Vessel. Figure 13 shows a single, complex stream surface
seeded from the inlet of the vessel data set. As indicated by
the flow directions shown in Figure 13 (a), the blood flow
starts from the bottom and then bifurcates when encoun-
tering the aneurysm (at the top-right corner). After that,
one flow branch moves to the left side, and another branch
moves to the bottom-right corner of the aneurysm. Without
SurfRiver, it could be challenging to examine the diverging
flows that pass by and pass through the aneurysm, respec-
tively. Even more challenging is the further divergences of
these two flow branches. With SurfRiver shown in Figure 13
(b) and the linking to Figure 13 (a), it becomes apparent that
surface A seeded at the inlet is separated into two branches
A1 and A2. A1 completely misses the aneurysm, while
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(a) (b) (c) (d)

Fig. 14: Looping through four stream surfaces (A to D) of the vessel data set for side-by-side examination of their similarities
and differences. These surfaces are carefully seeded from the inlet close to the aneurysm. For the river views, wr = 0.97.

A2 partially goes through the aneurysm. More specifically,
within A2, A2-1-2-2 passes by the aneurysm, and A2-2, A2-
2-1, and A2-2-2-2 pass through the aneurysm.

Figure 14 shows multiple stream surfaces produced from
a series of seeding curves placed at the inlet and close to the
aneurysm. As highlighted in the zoom-in view of Figure 14
(a), the seeding curves are produced by selecting a point
near the aneurysm, cloning this point to three additional
points along the normal direction, and extending each of
these four points to a seeding curve along the binormal
direction. As the seeding curves vary along the inlet, the
stream surfaces exhibit the same general pattern of moving
from the middle-bottom corner to the top-left corner. Closer
examination finds that they are very different in terms of the
respective flows concerning the aneurysm region. Surface D
completely misses the aneurysm, while C covers only the
inner part of the aneurysm (refer to branch C1). A covers
a larger extent of the aneurysm than C. B covers an even
larger extent of the aneurysm than A. Moreover, within
the aneurysm, B1 is further diverged into B1-1 and B1-
2. Unlike on the other surfaces, B1-1 and B1-2 flow into
a different vessel branch at the middle-right corner. With
SurfRiver, comparing and tracking these changes across
multiple surfaces become easy and convenient for users.

6.3 Domain Expert Feedback
We collaborated with Dr. Jian-Xun Wang, an expert in
computational fluid dynamics and a co-author of this work,
to evaluate the effectiveness of SurfRiver. The evaluation
consists of two stages, and each took about two hours. In
the first stage, Dr. Wang was trained to learn the basics
of SurfRiver and get familiar with the interface using the
tornado and five critical points data sets. In the second
stage, Dr. Wang was instructed to use SurfRiver to explore
other data sets (the Bénard flow data set and the vessel data
set provided by him) and complete a few predetermined

tasks, such as changing seeding curves and identifying flow
patterns. The following is a summary of his feedback.

Dr. Wang stated that “Overall, SurfRiver is a useful tool to
visualize and explore complex flow fields using stream surfaces.
The most innovative aspect of this tool is the development of the
2D river view of the 3D surfaces.” Compared to line-based
solutions, surface-based approaches have their advantages.
They can better represent complex flow structures for spe-
cific applications, e.g., hemodynamics, where the flow is less
turbulent but very intricate due to geometric complexity.
However, two main challenges prevent surface-based tech-
niques from being widely adopted for flow visualization.
First, it is unclear how to place seeding curves to generate
and select flow surfaces effectively. Second, flow surfaces are
more likely to create visual occlusion, making the analysis
much tricky. He commented that “The new 2D river view
interface can help address these challenges. For example, in the
2D river view, users can efficiently study seeding sensitivity by
interactively placing seeding curves and exploring the resulting
surfaces. Moreover, using the 2D river view to explore 3D flow
surfaces can largely eliminate visual occlusion, making surface-
based flow visualization more accessible and usable.”

Dr. Wang added that “SurfRiver could be directly applied
to cardiovascular flow visualization and analysis.” The flow in
human vasculature is often less turbulent (with moderate
Reynolds number) yet has intricate flow patterns due to
irregular vascular geometries. Thus, it can be well repre-
sented by stream surfaces. He further commented that “The
2D river-based interface provides an effective way to extract
meaningful flow structures by selecting out representative 3D
flow surfaces in the 2D river map. Moreover, SurfRiver allows
users to explore how the flow evolves and where the surfaces differ
from each other in the 2D view. Lastly, SurfRiver visually encodes
many typical flow features compactly and straightforwardly. The
shape information (curvature and torsion) is clearly reflected as
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fluctuations of the trend line. The flow field characteristics (e.g.,
magnitudes of flow velocity or vorticity) are visually encoded as
ellipses. This feature could be very useful in visualizing the mul-
tidimensional and multivariate hemodynamic information (e.g.,
flow velocity, pressure, vorticity, wall shear stress, etc.) simulta-
neously, providing a comprehensive analytical capability to better
explore and understand the relation between hemodynamic factors
and pathological developments.”

Dr. Wang also pointed out some possible improvements
for SurfRiver. First, although the seeding strategy is cur-
rently based on the user’s manual selection and could
provide sufficient flexibility, it also poses challenges in de-
termining appropriate seeding curve placement. It might
be helpful to provide users a candidate group of seeding
curves that lead to representative flow surfaces, and users
can select from and modify the seeding curve candidates to
explore the flow more conveniently. Second, an extension of
SurfRiver to path surfaces for unsteady flow will be exciting
and useful in visualizing many transient flows. Third, the
turbulence intensity information can be encoded into the
trend line to reflect the flow’s turbulent level.

6.4 Discussion
Overall, our experience, along with feedback from the
domain expert, shows that SurfRiver does serve well its
original purpose: enabling comparative visualization of a
family of stream surfaces by flattening 3D surfaces into 2D
rivers. Nevertheless, the current design and implementation
have the following limitations. First, we can eliminate visual
occlusion by adjusting λ for spatial proximity ordering.
However, as Figure 4 shows, although displaying separated
branches eliminates visual occlusion, the spatial relation-
ships among 3D surface branches may no longer be pre-
served in the 2D river branches. Therefore, in practice, users
may still prefer to maintain spatial relationships while sac-
rificing occlusion-free mapping. Second, unlike MCPD, we
find it difficult to generate stable river layouts when using
JSD for similarity alignment. This is because as the reference
timelines li moves to its neighboring ones on a surface,
the most similar timeline lk on a different surface would
likely change, leading to unstable alignment behaviors. This
problem is more pronounced when we examine timelines
around flow feature regions, such as the hurricane’s eye,
where the feature distributions for neighboring timelines
could vary significantly. Third, there are some issues with
the ellipse encoding (e.g., uniform sampling along the time-
lines may lead to potential loss of feature information), and
more evaluation is needed. Fourth, although our current
implementation automatically zooms in/out one view when
the other view gets zoomed in/out manually, the mini-
map could also be automatically panned or re-centralized
when the timelines of interest are about to get out of bound
from the current view. Going further, we can integrate
focus+context visualization into visual exploration as well.

7 CONCLUSIONS AND FUTURE WORK

We have presented SurfRiver, an analytical solution for com-
parative visualization of stream surfaces by transforming
them into the TextFlow-like visual representation. Flattening
and aligning surfaces in 3D to rivers in 2D allows clear
comparison of multiple stream surfaces. We demonstrate the

effectiveness of SurfRiver in augmenting the user’s ability to
examining and reasoning seeding sensitivity and variability
of a family of stream surfaces. The evaluation provided by
a domain expert also confirms the efficacy of SurfRiver.

For future work, besides mapping the flow direction to
the horizontal direction of SurfRiver, we will also explore
mapping the orthogonal timeline direction to the horizontal
direction, enabling the comparison of the variational flow
information for a streamline along the seeding curve di-
rection. The general idea of SurfRiver can be applied to
flattening other surfaces, such as path surfaces and streak
surfaces, for visual abstraction. But we should also note that
the nature of unsteady flow field poses several challenges.
First, unlike stream surfaces, path surfaces and streak sur-
faces may have self-intersections, leading to more compli-
cated spatial patterns. Second, in unsteady flow fields, the
temporal information of timelines carries physical meaning.
Therefore, the spatiotemporal relationships between time-
lines must be considered, which increases the complexity as
well. We will consider further constraints to appropriately
resemble these patterns in 2D and provide additional hints
for users to understand the temporal information on sur-
faces generated from unsteady flow fields.
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Advanced curved planar reformation: Flattening of vascular struc-
tures. In Proceedings of IEEE Visualization Conference, pages 43–50,
2003.

[24] O. D. Lampe, C. Correa, K.-L. Ma, and H. Hauser. Curve-centric
volume reformation for comparative visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1235–1242, 2009.

[25] J. Ma, C. Wang, and C.-K. Shene. FlowGraph: A compound
hierarchical graph for flow field exploration. In Proceedings of IEEE
Pacific Visualization Symposium, pages 233–240, 2013.

[26] J. Ma, C. Wang, C.-K. Shene, and J. Jiang. A graph-based interface
for visual analytics of 3D streamlines and pathlines. IEEE Transac-
tions on Visualization and Computer Graphics, 20(8):1127–1140, 2014.

[27] J. Martinez Esturo, M. Schulze, C. Rössl, and H. Theisel. Global
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