
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

FlowHON: Representing Flow Fields Using
Higher-Order Networks

Nan Chen, Zhihong Li, and Jun Tao*, Member, IEEE

Abstract—Flow fields are often partitioned into data blocks for massively parallel computation and analysis based on blockwise
relationships. However, most of the previous techniques only consider the first-order dependencies among blocks, which is insufficient
in describing complex flow patterns. In this work, we present FlowHON, an approach to construct higher-order networks (HONs) from
flow fields. FlowHON captures the inherent higher-order dependencies in flow fields as nodes and estimates the transitions among
them as edges. We formulate the HON construction as an optimization problem with three linear transformations. The first two layers
correspond to the node generation and the third one corresponds to edge estimation. Our formulation allows the node generation and
edge estimation to be solved in a unified framework. With FlowHON, the rich set of traditional graph algorithms can be applied without
any modification to analyze flow fields, while leveraging the higher-order information to understand the inherent structure and manage
flow data for efficiency. We demonstrate the effectiveness of FlowHON using a series of downstream tasks, including estimating the
density of particles during tracing, partitioning flow fields for data management, and understanding flow fields using the node-link
diagram representation of networks.

Index Terms—Flow visualization, higher-order network, data transformation, data partition, and task distribution.

F

1 INTRODUCTION

Flow visualization plays a vital role in understanding
dynamic systems for various domains and applications.
In the past decades, flow visualization has been studied
extensively, and many techniques were developed to effec-
tively visualize and analyze flow fields. Recently, due to
the increasing size and complexity of simulated flow fields,
many approaches partition the flow data into data blocks for
further processing or analysis. The data partitioning reduces
the size of data processed by each computing node for
scalability and allows the structure of flow fields to be un-
derstood at the block level. At the core of these techniques, a
graph is used either as a data structure for graph algorithms
to analyze flow fields or as a visual representation to enable
clear observation and easy interaction in 2D.

Although developed for different scenarios, existing
graph-based techniques usually share a similar construction
process. Nodes in a graph represent data blocks, and edges
represent the transition probabilities among data blocks. The
transition probabilities are estimated empirically based on
the number of particles moving between blocks. In this way,
the graph provides affinity relationships between blocks and
captures the structure of the flow field. Analysis of the graph
facilitates a series of downstream tasks, including data
partition [26], data prefetching [11], [13], [43], and particle
advection scheduling [4]. By applying layout algorithms, the
graph may be used to present the flow structure compactly

• * denote the corresponding author.
• N. Chen is with the School of Computer Science and Engineering,

Sun Yat-sen University and the Johns Hopkins University. E-mail:
chenn53@mail2.sysu.edu.cn. The majority of this work was conducted
during his undergraduate studies at SYSU.

• Z. Li and J. Tao are with the School of Computer Science and Engi-
neering, Sun Yat-sen University and the National Supercomputer Cen-
ter in Guangzhou, China. J. Tao is the corresponding author. E-mail:
lizhh236@mail2.sysu.edu.cn, taoj23@mail.sysu.edu.cn.

without occlusion [39] as well.
However, conventional graph-based flow visualization

techniques usually assume the Markovian process in de-
scribing the relationships among blocks, which could be
inaccurate. The Markovian assumption implies that the
particles in the same block will follow the same transition
probability distribution when moving to the next block.
This assumption does not hold in most cases, especially
for blocks with complex flow behaviors. Some approaches
may employ a multi-resolution partitioning strategy to fur-
ther divide the complicated block. For example, the Flow-
Graph [21] evaluates the entropy of flow directions in blocks
to guide the partitioning. But this strategy may require
a great amount of blocks to precisely describe the curvy
boundaries of regions.

To the best of our knowledge, Zhang et al. [43] is the only
existing approach that considers higher-order dependen-
cies. But this technique fails to incorporate the connections
among higher-order dependencies. It captures only the local
higher-order patterns but not the global structure of entire
flow fields. Therefore, this technique may not be easily
extended to support tasks such as data partitioning, work-
load balancing, and decomposition of flow fields, where the
global structure matters.

In this paper, we aim to capture block-wise higher-
order dependencies in a flow field at a global scale. Toward
this end, we extract the higher-order dependencies among
blocks and organize these dependencies as a higher-order
network. The higher-order dependencies allow different
flow behaviors in a single data block to be separated so that
the flow transition patterns among data blocks can be accu-
rately described. Furthermore, the network, connecting the
higher-order dependencies, allows the dependencies to be
studied at a larger scale and provides a compatible interface
for existing network analytic algorithms to be applied. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

main challenges to achieving this goal can be summarized
into three aspects. The first challenge is to extract higher-
order dependencies that can precisely model diverse flow
patterns in the flow field and avoid redundant higher-order
dependencies at the same time. The second challenge is to
approximate the transition probabilities between nodes in
the network so that the flow behavior can be accurately
described. The final challenge is to establish a connection
between network analytic methods and flow fields, which
makes it possible to analyze flow fields by analyzing corre-
sponding higher-order networks.

To tackle the above challenges, we propose FlowHON,
a unified framework to construct higher-order networks
from flow fields. The framework formulates the HON con-
struction problem as an optimization problem with three
linear transformations, including two linear layers for node
generation and one for transition estimation. This formu-
lation generalizes existing HON construction algorithms.
Therefore, it may lead to potentially better performance,
with existing approaches being special solutions to our
optimization problem. We propose an efficient approach to
optimize the node generation and transition estimation in
a unified framework and examine the performance of our
approach using several downstream tasks with a variety of
data sets. The tasks include estimating particle transitions
using random walks on our network, data partitioning by
applying a community detection algorithm, and visualizing
the flow field structure by leveraging graph layout. We
demonstrate the effectiveness by comparing our approach
with existing graph-based approaches on these tasks.

2 RELATED WORK

Graph-based techniques for flow visualization. Graph-
based approaches have received considerable attention from
the scientific visualization community in various kinds
of applications [37]. In flow visualization, several graph-
based techniques were developed to describe the access
pattern among blocks during particle tracing. Bhatia et
al. [2] designed edge maps for triangular meshes, which
mapped the entry and exit points of streamlines on the
boundary of individual triangles. Chen et al. [5] proposed
the access dependency graph to assess the dependencies
between different data blocks in the flow field and used
it to guide the file layout for improved I/O performance.
Chen et al. [3] proposed the N-hop access dependency
graph that further considered the N-hop transitions. Chen
et al. [4] applied discrete-time Markov chains on node-link
graphs to predict particle trajectories on time-varying flow
fields to guide seed advection schedules. Nouanesengsy et
al. [26] utilized a flow graph with initial seed locations
to estimate each data block’s workload during parallel
streamline generation. Guo et al. [13] developed a graph-
based model that could be constructed on the fly to predict
data access for data block prefetching. Gerndt et al. [11]
applied a similar strategy to build a first-order probability
graph that characterized the successor relation of blocks
in CFD data sets. Zhang et al. [43] applied higher-order
dependencies among data blocks to predict the data access
pattern and guide the data prefetching. Zhang et al. [44]
built an access dependency graph to estimate workload.

Other works applied graphs to understand the structures of
flow fields, such as Morse Connection Graph (MCG) [6], [7],
Flow Web [39], FlowGraph [21], [22], Flow topology graph
(FTG) [1], and Semantic Flow Graph [35].

This work, while sharing a similar idea to MCG [6], [7]
of encoding flow patterns into a network’s nodes, diverges
in its approach and application. MCG directly analyzes the
vector field of flow fields and denotes flow behaviors as
nodes in a graph, with each node usually representing an
irregular area. This method provides a rigorous interpreta-
tion of the underlying vector field, making it exceptionally
suitable for precise visual analysis that allows the identifi-
cation of subtle flow patterns. However, its computational
complexity restricts its use primarily to 2D flow fields, and
extending MCG to accommodate 3D or unsteady flow fields
is non-trivial. In contrast, FlowHON leverages higher-order
dependencies among uniformly partitioned data blocks to
depict flow dynamics, employing higher-order nodes to
extract flow patterns. FlowHON provides a statistical way
to identify flow patterns as it is built from individual tra-
jectories sampled from vector fields. Essentially, it relies on
the statistics of particle movements to extract higher-order
Markov dependencies among blocks, which improves its
scalability and makes it practically applicable to 3D and
unsteady flow fields. Hence, while MCG is ideal for precise
visual flow analysis, our method prioritizes an approxima-
tion of the flow field to emphasize dominant behaviors and
interdependencies among data blocks, which aids visual
exploration and parallel particle tracing.

Parallel tracing and data management. Parallel par-
ticle tracing algorithms generally fall into three main
categories: data-parallelism, task-parallelism, and hybrid-
parallelism [45]. The data-parallel mechanism distributes
data blocks to computing nodes and exchanges particles
during tracing. Yu et al. [40] partitioned flow data based
on the hierarchical representation of data blocks. Moloney
et al. [23] applied k-d tree to divide the dataset of uniform
grid for load balancing in sort-first parallel direct volume
rendering. With a similar idea, Zhang et al. [42] applied k-
d tree decomposition to balance workload during parallel
particle tracing. Chen et al. [8] partitioned flow data based
on flow direction and features. Peterka et al. [28] employed
a static round-robin partition algorithm to distribute data
blocks among processes. Nouanesengsy et al. [25] parti-
tioned flow data into mutually exclusive spans of time for
high-resolution FTLE computation. Graph-based models are
generally employed to estimate the workload of each data
block during running, which cooperates with workload-
aware allocation methods to generate the optimal data
distribution among processors [26].

The task-parallel mechanism distributes the tracing tasks
to computing nodes, which load data blocks on demand.
Task-parallel tracing frameworks usually integrate methods
such as data prefetching and file layout rearrangement to
exploit data locality and to boost I/O performance. Many
of these approaches leveraged graph-based representation
to guide the file layout [3], [5], data prefetching [11], [13],
[43], and task grouping [4]. Hong et al. [17] employed
an LSTM-based model to estimate the access pattern for
parallel particle tracing in flow fields.

Particle density estimation. Reich et al. [29] applied

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

time-discrete Markov chains on static unstructured flow
fields to estimate particle distributions over time given
initial particle distributions. Hollt et al. [15] used first-order
forward tracking to estimate the trajectory of a particle
originating in a specific cell. Guo et al. [12] introduced a
divide-and-conquer mechanism to compute stochastic flow
maps, where they decoupled the time domain into short
periods, performed Monte Carlo particle tracing for each
subinterval independently, and then composed the results
to approximate the particle distribution for a longer period.

Our approach falls into the category of graph-based
approaches. However, unlike existing methods, ours is the
only one that leverages higher-order dependencies and
their connections to depict flow fields at a refined level.
Most similar to ours are methods that consider N-hop or
higher-order dependencies. Chen et al. [3] included N-hop
transitions among blocks into dependency graphs. But this
construction only compensates for underestimated long-
term dependencies and does not provide a refined level of
behaviors inside each data block. Zhang et al. [43] explored
higher-order dependencies to distinguish flow behaviors in
individual blocks. But these dependencies are only used for
data prefetching, and their connections are not considered.
Hence, this work does not describe the higher-order depen-
dencies at a global level.

Clustering techniques for flow visualization. Cluster-
ing algorithms play a crucial role in flow visualization by
identifying and summarizing representative flow patterns
within a flow field. Yu et al. [41] clustered streamlines
based on spatial proximity and geometric similarity, con-
structing a hierarchy of streamline bundles that capture
flow structures at multiple levels of detail. Tao et al. [34]
identified representative streamlines based on their contri-
bution to sampled viewpoints and then performed clus-
tering by minimizing a mutual information loss. Lu et
al. [20] represented streamlines using statistical distributions
of user-defined measurements along their trajectories, lever-
aging these extracted features for similarity-based cluster-
ing. Oeltze et al. [27] evaluated spectral clustering, agglom-
erative hierarchical clustering, and k-means quantitatively
and qualitatively for reducing visual clutter in simulated
blood flow visualization. Hong et al. [16] introduced Flow
LDA, which represents pathlines as documents and features
as words, applying Latent Dirichlet Allocation (LDA) to
cluster pathlines through probabilistic topic modeling. Han
et al. [14] proposed FlowNet, which encodes streamlines
as binary volumes, uses an autoencoder to extract latent
representations, and applies t-SNE followed by DBSCAN
for clustering. In contrast to these approaches, FlowHON
encodes flow fields into higher-order networks, where in-
dividual nodes represent small, localized flow patterns. By
applying community detection to the constructed network,
FlowHON identifies and groups these local patterns into
more representative streamline clusters for visualization.

3 HIGHER-ORDER NETWORK FOR FLOW

We introduce FlowHON, a higher-order network (HON)
for flow visualization. Our goal is to encode the higher-
order Markov dependencies in the graph representation,

3, 1 3, 2 3, 3 3, 4

2, 1 2, 2 2, 3 2, 4

1, 1 1, 2 1, 3 1, 4

3,2

2,1

2,2 2,3

1,3

2,4

(a) (b)

3,2

2,1

2,2|3,2

2,2|2,1 1,3

2,42,3|2,2.3,2

2,3|2,2.2,1

(c)
Fig. 1: Illustrative example of the higher-order network. (a)
shows a vector field uniformly partitioned into a 4× 3 grid.
(b) shows the corresponding first-order network. (c) shows
the corresponding higher-order network.

which can be leveraged by existing graph-based visual-
ization techniques to improve their performance without
modification. The higher-order dependency indicates that
the transition probability relies on not only the current state
but also a series of previous states. Higher-order depen-
dency commonly exists in many real-world applications,
but traditional graph-based approaches do not exploit it.
Conventional approaches are often built upon first-order
networks (FON), which cannot describe complicated tran-
sition patterns. In this section, we will briefly introduce the
concept of HON in the context of flow visualization and
explain how the HON facilitates the analysis of flow fields.
For HON techniques in a broader context, please kindly
refer to Appendix A.

Higher-order dependency. Figure 1 (a) illustrates an
example of a flow field uniformly partitioned into a 4 × 3
grid. The streamlines exhibit two movement patterns, which
are distinguished by their colors. The trajectories of particles
starting from block (3, 2) are colored in blue, and those from
block (2, 1) are in red.

Traditional approaches (e.g., [21], [22], [39]) model the
block-wise relationships by collecting statistics of sampled
particles moving between consecutive blocks, resulting in a
directed graph, as shown in Figure 1 (b). This graph encodes
the first-order Markov dependency, meaning that the distribu-
tion of the next block to visit only depends on the current
block where a particle resides. For example, all particles in
block (2, 2) will move to (2, 3) (i.e, p((2, 2)→ (2, 3)) = 1.0),
and a particle in (2, 3) has an equal chance to visit ei-
ther (2, 4) or (1, 3) (i.e., p((2, 3) → (2, 4)) = 0.5 and
p((2, 3) → (1, 3)) = 0.5). However, this assumes that all
particles in a block share the same distribution, which may
be inaccurate. In Figure 1 (a), we can see that the blue
particles in (2, 3) will move to (2, 4) and most of the red
ones will move to (1, 3).

The higher-order Markov dependency encodes the transition
from a sequence of possible events to the next event. In our
scenario, this means that the probability of the next block
to visit depends on not only the current block where a
particle resides but also the series of blocks it has visited

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

before. For example, using higher-order dependencies, the
red particles in (2, 3) will be denoted as (2, 3)|(2, 2).(2, 1),
meaning particles currently in (2, 3) given that they come
from (2, 2) and (2, 1). For these particles, the probability to
visit (2, 4) becomes p((2, 3)|(2, 2).(2, 1)→ (2, 4)) = 0.2 and
the probability to visit (1, 3) becomes p((2, 3)|(2, 2).(2, 1)→
(1, 3)) = 0.8. Similarly, for blue particles in (2, 3), the
transition becomes p((2, 3)|(2, 2).(3, 2) → (2, 4)) = 1.0.
Note that patterns of the blue and red streamlines become
more distinguishable using this representation. Therefore,
the higher-order Markov dependencies provide a clearer picture
of particle movements between blocks. To avoid confusion, we
refer to the evidence sequence of events as a higher-order state
(e.g., (2, 3)|(2, 2).(3, 2)→ (2, 4) is a third-order dependency
and (2, 3)|(2, 2).(3, 2) is a third-order state).

Higher-order network. The higher-order dependencies
only describe the local transition patterns. To further cap-
ture the global structure of a flow field, transitions among
higher-order states must be incorporated. The higher-order
network (HON) is a directed graph whose nodes are higher-
order states and whose edges encode transition probabilities
between nodes. Figure 1 (c) illustrates such an example. For
particles in block (3, 2), as no preceding block is given,
these particles start from a first-order state (3, 2). After
moving to (2, 2), the particles have a second-order state
(2, 2)|(3, 2). An edge is added to the graph to connect
the two states (3, 2) and (2, 2)|(3, 2). Compared to the
corresponding FON (Figure 1 (b)), the higher-order net-
work splits the first-order state (2, 2) into two second-
order states (2, 2)|(3, 2) and (2, 2)|(2, 1). These second-order
states “record” the history of particles to better distinguish
different flow behaviors. Similarly, the node (2, 3) is split
into two nodes (2, 3)|(2, 2).(3, 2) and (2, 3)|(2, 2).(2, 1), and
the edge (2, 2)→ (2, 3) is split into two respective edges.

Why do we need higher-order networks in flow analy-
sis? An interpretation of the HON is that the HON implicitly
subdivides blocks in a regular grid along the flow. As illustrated
by Figure 1 (a), particles in block (2, 2) form two groups
based on which blocks they have previously visited. This
implicitly subdivides block (2, 2) into a red and a blue
region along streamlines, corresponding to flows going to
the right and those going downward, respectively. Similar
subdivisions of blocks are observed in real-world settings,
as discussed in Section 4.2.

The subdivision behavior of the HON provides a finer-level
description of the flow field, where the global structure can be
better studied. In Figure 1 (c), we can easily identify two com-
munities in the HON, where there is only a weak transition
between the two communities. However, in Figure 1 (b),
this structure is not available in the FON, as the two nodes
(2, 2) and (2, 3) mix different movement patterns. Although
multi-resolution techniques, such as octree, may be used to
further subdivide blocks with complicated patterns, these
techniques partition the blocks regularly along the axes,
which requires a much higher number of small blocks to
approximate the irregular flow boundaries.

Additionally, as a directed graph, the HON allows all exist-
ing graph analysis approaches to be applied directly, with better
accuracy. For example, the random walk can be used to ap-
proximate the particle movement on the graph. In Figure 1,
a particle starting from (3, 2) will reach either (2, 4) or (1, 3)

blocks HO-states HO-nodes
next step
HO-nodes

(a) distribute (b) aggregate (c) transit

Fig. 2: Illustration of our formulation of the HON construc-
tion from data blocks, which is considered as three linear
layers: (a) distributing particles from data blocks to HO-
states; (b) aggregating HO-states into HO-nodes; and (c)
transiting from current HO-nodes to next-step HO-nodes.

with 50% of chance using the FON, while this particle will
reach (2, 4) for sure using the HON. For another example,
community detection algorithms can be used to identify the
two different streamline bundles using the HON but not
using the FON.

4 OUR CONSTRUCTION ALGORITHM

We formulate the HON construction process as a net-
work optimization problem. The network contains three
linear layers connecting particle distributions in data blocks,
higher-order states (HO-states), and higher-order nodes
(HO-nodes). The HO-nodes are formed by aggregating
similar HO-states to reduce the size of a fixed-order net-
work [31]. Specifically, these three layers represent the distri-
bution of particles from data blocks to HO-states, the aggregation
of HO-states into HO-nodes, and the transitions between HO-
nodes, respectively, as shown in Figure 2. By connecting
the three layers, our approach allows different processing
steps in HON construction to be optimized in a unified
framework. In this section, we will introduce our problem
formulation and then discuss the basic components of the
optimization in detail.

Notations. For clarity, we distinguish two similar con-
cepts as follows. The higher-order state is the finest level
of elements in the HON. An HO-state represents a se-
quence of blocks visited by a particle consecutively (e.g.,
(2, 3)|(2, 2).(3.2)). The higher-order node is a node in the
HON, representing a group of HO-states exhibiting similar
transition behaviors. Aggregating HO-states into HO-nodes
could reduce the size of the HON, enhancing computation
efficiency and visualization. In the following, we will denote
matrices using bold uppercase letters (e.g., D) and vectors

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

using bold lowercase letters (e.g., b). Subscripts, such as
Di,j or bi, will be used to refer to their elements.

Existing HON construction approaches Higher-order
networks fall into two types: fixed-order [31] and variable-
order networks [38]. In a fixed-order network, each node
represents a state of a fixed order, and each edge denotes
the transition between two states. Although capturing the
finest-grained dependency information up to a fixed order,
a fixed-order network usually expands exponentially with
its order. Compared to fixed-order networks, a variable-
order network contains nodes representing states of variable
orders and adds higher-order nodes only when their transi-
tion behaviors differ from corresponding lower-order ones,
reducing network size by eliminating unnecessary higher-
order nodes. However, variable-order networks reduce the
size based on hand-crafted rules, which may not always
yield the optimal performance.

4.1 Problem formulation

We jointly consider two essential problems in the HON
construction: how to generate nodes in the HON and how to
estimate the transition probabilities between nodes. Toward
this end, we formulate the HON construction process as an
optimization problem for a three-layer network. Each layer
is a linear transformation represented by a weight matrix,
which is elaborated as follows.

Distribution. The first layer is the distribution layer,
represented by the distribution matrix D ∈ Rm×n, where
m and n represent the numbers of HO-states and blocks,
respectively. It distributes particles in each data block to
corresponding HO-states. Formally, let two column vectors
b ∈ Rn and s ∈ Rm represent the numbers of particles
in blocks and HO-states, where elements bi and sj are the
number of particles in the i-th block and the j-th HO-
state, respectively. The distribution matrix D estimates s by
s = D·b. Each elementDj,i in the distribution matrix can be
seen as the fraction of particles in block bi that correspond
to HO-state sj (i.e., sj = bi · Dj,i). The matrix D should
fulfill two requirements: each column should be a partition
of unity, meaning that the numbers of particles in HO-states
should sum up to the number in the corresponding block,
and each row should only have one nonzero entry, meaning
that particles of an HO-state should only come from one
corresponding block.

Aggregation. The second layer is the aggregation layer,
represented by an aggregation matrix A ∈ {0, 1}r×m, where r
denotes the number of HO-nodes. This layer aggregates the
HO-states into HO-nodes to reduce the size of the network.
Similarly, the matrix A estimates a column vector n ∈ Rr

representing the number of particles in each HO-node by
computing n = A · s. The matrix A should only contain
binary values. Specifically, an element Ai,j equals to one if
the j-th HO-state is assigned to the i-th HO-node. Note that
only the HO-states sharing the same current block (meaning
that the particles are residing in the same block) could
be aggregated into the same HO-node. Additionally, each
column in A should be a one-hot vector, meaning an HO-
state should only be assigned to a single HO-node.

Transition. The third layer is the transition layer, rep-
resented by the probability transition matrix T ∈ Rr×r . This

Initialization Update

Estimate D

Initialize A

Optimize T, Ts

Update M Update A

Fig. 3: Optimization routine for our FlowHON construction.
The initialization stage initializes A and D. The update
stage iteratively optimizes T based on the current A, and
then updates A based on T, so that the interaction between
A and T is incorporated. The optimization is guided by a
loss function based on D, A, and T. The loss function is
evaluated in the optimization and the validation, but they
are hidden in this figure for visual compactness.

layer approximates the movement of particles between HO-
nodes. We use the term “block steps” to denote the number
of steps counted by blocks, reflecting the sequential move-
ment of particles between blocks. Formally, given a column
vector n(t) ∈ Rr representing the number of particles in
each HO-node at block step t, the matrix T estimates the
number at block step t + 1 as n(t+1) = T · n(t) ∈ Rr .
Specifically, an element Ti,j represents the transition prob-
ability from the j-th HO-node to the i-th HO-node. Note
that the transition is not always valid between any two
HO-states. In our case, we enforce two constraints to avoid
the violation of physical rules (e.g., a transition should
not appear between two spatially disjoint blocks) and the
violation of the semantic meaning of HO-states (e.g., a
valid transition from state A|B.C should move to states
in the form of “∗|A.B”). Accordingly, transitions between
HO-nodes should be constrained as well. In practice, this
constraint is enforced by a mask matrix M ∈ Rr×r , where
an element Mi,j indicates the validity of the transition from
the j-th to i-th HO-nodes.

4.2 Optimization
The optimization routine for our FlowHON is illustrated in
Figure 3. This routine aims to identify the optimal aggre-
gation of HO-states and transitions between HO-nodes to
best mimic the transition statistics in the sampled data. The
optimization is performed in two stages: the initialization
stage and the update stage. In the initialization stage, the
initial values of the aggregation matrix A and the distribu-
tion matrix D are computed. These two matrices provide
the initial HO-states and HO-nodes. In the update stage, a
repeated procedure is performed to update the transition
matrix T and the aggregation matrix A iteratively. In each
iteration, we first optimize the transition matrix T based on
the current HO-nodes (A) and then update the HO-nodes
(A) based on the optimized transitions. The source code is at
repository https://github.com/NanChanNN/FlowHON.

Loss function. The loss function evaluates the error of es-
timating the particle distribution over blocks using a model.
This loss function is model-agnostic and can be applied
to both first-order and higher-order networks. We use the
estimation error to guide the optimization, as the estimation
of particle movement is an essential task in graph-based
flow visualization, on top of which many other applications

https://github.com/NanChanNN/FlowHON

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

are built. Given the initial number of particles in blocks
b(0) ∈ Rn at block step 0, we use the matrices D, A, T
to estimate the numbers up to a predefined block step k
(i.e., {b̂(t) ∈ Rn}kt=1). The estimated numbers are compared
to the actual numbers from tracing (i.e., {b(t) ∈ Rn}kt=1)
using KL-Divergence (KLD). Each component in a vector b
(or b̂) should be divided by the total number of particles
to convert b (or b̂) to a probability distribution for the
KLD computation. As this division only scales the loss by
a constant factor, we keep using the vector b in our loss
function for simplicity:

L =
k∑

t=1

dKL(b
(t)||b̂(t)) =

k∑
t=1

∑
i

b
(t)
i · log

b
(t)
i

b̂
(t)
i + ε

, (1)

where b(t)i and b̂(t)i are the actual number and the estimated
number of particles in the i-th block at block step t, respec-
tively, and ε is a small constant to avoid division by zero.

The vector b̂(t) is estimated using the matrices D, A,
and T. Given the initial particle number in blocks b(0),
the particle numbers in HO-states and in HO-nodes can be
derived by s(0) = D ·b(0) and n(0) = A · s(0) = A ·D ·b(0),
respectively. Then, the movement of particles between HO-
nodes can be approximated using the transition matrix T,
and the particle number in HO-nodes at block step t can be
estimated as n̂(t) = Tt · n(0). Note that we use parentheses
in superscripts to distinguish block steps (e.g., (t)) from
the power exponent (e.g., t). At each block step, we can
aggregate the particle number in HO-nodes to the number
in blocks using b̂(t) = nonzero(DT ·AT) · n̂(t), where DT

and AT are the transpose of D and A, respectively, and
nonzero(·) is an element-wise function that sets nonzero
elements in a matrix to 1. In summary, the estimated particle
numbers in blocks b̂(t) at block step t is given by:

b̂(t) = nonzero(DT ·AT) ·Tt · (A ·D · b(0)). (2)

Therefore, we can see that the loss function only relies on D,
A, and T, which are the parameters to be optimized in our
framework.

Estimate D. The construction of matrix D is part of the
initialization phase. The matrix D transforms the number
of particles in each block to the number of particles in each
HO-state. We provide two strategies for the initialization:
exact assignment and approximate assignment. The exact as-
signment uses backward tracing of particles to determine
the exact visiting history. Given the visiting history, we
could precisely assign a particle to its corresponding HO-
state. While accurate, exact assignment suffers from the
heavy computation of backward tracing for each particle.
During experiments, we observed that the distribution from
the blocks to the HO-states is quite stable at the beginning,
which means that we could assign particles on a block to
HO-states based on the statistics of previous samples. Moti-
vated by this, we put forward the second strategy, namely
approximate assignment. This strategy uses statistics from
sampled particles to determine the fraction of particles
corresponding to each HO-state in a block. The distribution
matrix only reflects the statistics of HO-states when the
visiting history is not given. As the distribution from the

blocks to the HO-states is not involved in later transitions,
this matrix will remain constant after initialization.

Initialize A (node generation). The aggregation matrix
A has more columns than rows (i.e., r < m), which re-
duces the amount of HO-nodes in the resulted network.
This matrix can be derived from any method that groups
similar HO-states into HO-nodes. For example, we may use
the variable-order network [38] to produce the aggregation
matrix by considering the lower-order node to be a group of
higher-order states. We call this method of node generation
the semantic approach, since HO-states are clustered accord-
ing to their semantic meanings. Specifically, an HO-state can
be grouped into the respective lower-order node only if they
share the same preceding history. However, this may fail to
group HO-states with similar behavior but different previ-
ous blocks. In our implementation, we apply the hierarchical
clustering to group similar HO-states in each block. The
hierarchical clustering starts with clusters of individual HO-
states and merges the two closest clusters in each iteration
if their distance is smaller than a predefined threshold.
The distance between two HO-states u and v is defined
as the Euclidean distance dE between their corresponding
transition probability distributions pu and pv . The distance
d(ci, cj) between the two clusters ci and cj is defined as the
weighted average of distances between their HO-states:

d(ci, cj) =

∑
u∈ci,v∈cj

wu · wv · dE(pu, pv)∑
u∈ci

wu ·
∑

v∈cj
wv

, (3)

where wu and wv are the amounts of transitions related to
HO-states u and v, respectively. Note that we use transition
probabilities from HO-states to blocks, not between HO-
states, to avoid clustering overfitting.

Figure 4 compares individual HO-states, HO-nodes gen-
erated by the semantic scheme, and HO-nodes generated
by hierarchical clustering. The spheres represent particles
within the block highlighted in red, with their colors indicat-
ing the corresponding HO-nodes. The streamline segments
corresponding to the particles are depicted in the same
respective color. We observe that particles of the same color
are located in similar regions within the block. These regions
irregularly partition the block, with streamlines in the same
area exhibiting similar behaviors. Ideally, our goal is to rep-
resent all streamlines with identical patterns using a single
HO-node, thereby avoiding redundancy. This means that
streamlines sharing the same pattern should be depicted
in the same color. In Figure 4 (a), individual HO-states
depict flow patterns at the finest level. However, multiple
HO-states often represent streamlines with similar patterns,
resulting in a mix of colors and redundancy. The seman-
tic scheme, as shown in Figure 4 (b), attempts to group
HO-states into HO-nodes according to predefined semantic
rules. However, this method is limited by its reliance on
semantics and does not fully achieve the desired outcome.
For example, some green particles share a transition pattern
with the red ones, while others align more closely with the
blue particles. In contrast, Figure 4 (c) illustrates that HO-
nodes generated through hierarchical clustering provide a
more concise summarization of transition patterns. Particles
with the same pattern are consistently grouped together,
sharing the same color and moving towards the same block,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b) (c)
Fig. 4: Visualization of HO-nodes produced by different schemes to group HO-states. (a) shows the individual HO-
states. (b) shows the HO-nodes generated by the variable-order network [38], or the semantic scheme. (c) shows the
HO-nodes generated by hierarchical clustering. The red box indicates the selected block, and the red arrows indicate
the flow directions. The spheres represent sampled particles, with colors corresponding to respective HO-nodes. In each
subfigure, spheres sharing the same color belong to the same HO-node (or HO-state).

resulting in a clearer and more effective representation of
flow behaviors.

Update M. An element Mi,j in the mask matrix M
records whether the transition between the i-th and j-th
HO-nodes is physically meaningful. Given the aggregation
matrix A, this can be easily done by checking whether the
transition between any pair of HO-states is possible. In prac-
tice, we may count the number of transitions between two
HO-nodes in the sampled data, setting the corresponding
element in M to zero if the count is zero. An zero entity in M
prevents the transition probability between corresponding
HO-nodes from being updated during transition matrix
optimization. The mask matrix update is involved in the
update loop in Figure 3 as it relies on the aggregation matrix
A. Therefore, once A is updated, the mask matrix M will
also be updated.

Optimize T (edge optimization). The transition matrix
T encodes the edges among HO-nodes in a HON. Tradi-
tional approaches [31], [38], [39] count the transitions be-
tween HO-nodes and normalize the count into the probabil-
ity. However, these approaches do not consider the dynamic
patterns of transitions, and therefore may overemphasize
the transition patterns when a block contains a large number
of particles. To circumvent this problem, rather than relying
on statistics collected from sampled particles, we aim to
learn a transition matrix T that can produce the observed
particle distributions at each block step. We start with a
matrix T(0) from sampled particles and update the matrix
to minimize the loss function L (Equation 1) using the
gradient descent algorithm. Formally, the update process is
performed iteratively using the following equation:

T(i+1) = T(i) + α
∂L

∂T(i)
�M, (4)

where α is the learning rate and � denotes element-wise
multiplication. For simplicity, we use nonzero(T(0)) as the
mask matrix M. For T to be a transition probability matrix,
two additional constraints are enforced. First, all elements
in T should be non-negative. We utilize projected gradient
descent [19] to replace all negative values by zero after every
weight update. Second, the summation of elements in each
column in T must equal to one for this column to be a
distribution. We enforce this by adding a penalty term in the

loss function to punish columns whose element summations
deviate from one:

LT = L+
∑
j

(
∑
i

Ti,j − 1)2. (5)

Besides, we normalize the transition matrix at the end of the
optimization process to make the summation of each col-
umn strictly equal to one. While the normalization process
guarantees the partition of unity, the least-squares penalty
term (Equation 5) is still necessary to ensure that the norm
of distribution is not too close to zero during optimization,
which could cause unstable numerical issues.

Update A (node update). Note that an HO-state should
be aggregated into the HO-node with the most similar
transition behavior. Therefore, when the transition proba-
bility (T) of HO-nodes is updated, the aggregation from
HO-states to HO-nodes should be updated accordingly.
Because the transitions from the HO-states to HO-nodes are
unknown, we use optimization to learn a transition matrix
Ts using a similar scheme as the T update. Note that each
column in Ts contains the transition probabilities from a
HO-state to all HO-nodes, and each column in T contains
the probabilities from a HO-node to all HO-nodes. There-
fore, for each HO-state, we can identify the most similar
HO-node by comparing the corresponding columns in Ts

and T using Euclidean distance. The aggregation matrix A
is constructed so that each HO-state is assigned to the most
similar HO-node.

Termination. We terminate the optimization routine if
one of the following two criteria is fulfilled. First, the node
assignment does not change for a predefined number of
iterations, which is done by checking whether any value
in A has changed during the update of A. Second, the
performance of the model does not improve for a predefined
number of iterations. We use a validation set to evaluate
the performance and pick the model with the minimum
validation loss for later use.

5 RESULTS AND DISCUSSION

5.1 Experiment Configuration

In the experiment, we compare our approach with the
traditional first-order network (denoted as FON) and the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

TABLE 1: Summary of data sets and timing performance. Block dimensions represent the number of blocks along each
axis. The “init” and “train” columns show the node initialization and transition optimization time, respectively. The “ours-
3rd”, “ours-2nd”, and “ours-4th” columns reflect the construction time for the third-order, second-order, and fourth-order
FlowHON, respectively. For FON, VAR, and Fixed, “init” specifies the original method’s construction time, while “init +
train” indicates the total time for the optimized version. The time is measured in seconds.

data block FON VAR Fixed ours-3rd ours-2nd ours-4th
data set dimension dimension init train init train init train init train init train init train
ABC 64× 64× 64 6× 6× 6 0.48 5.93 0.72 27.91 0.32 98.22 3.18 20.22 0.17 13.13 10.82 27.13
Bénard 128× 32× 64 8× 4× 4 1.82 3.50 3.04 14.08 0.82 84.00 10.34 51.01 0.37 11.98 60.92 75.26
combustion 506× 400× 100 10× 8× 2 0.45 5.07 0.63 21.59 0.43 70.74 6.58 22.71 0.12 6.31 145.61 206.91
computer room 417× 345× 60 6× 6× 3 0.30 3.46 0.43 8.91 0.34 31.66 3.81 13.29 0.16 5.73 31.56 53.67
crayfish 322× 162× 119 10× 5× 4 0.73 5.29 1.15 44.59 0.87 183.22 13.72 36.52 0.54 8.65 210.79 283.32
electron 64× 64× 64 5× 5× 5 0.25 4.96 0.29 6.66 0.17 16.62 2.34 10.99 0.13 5.16 20.11 31.76
five critical points 51× 51× 51 4× 4× 4 0.24 3.37 0.30 4.18 0.15 10.28 1.24 7.52 0.05 5.35 5.32 66.62
hurricane 500× 500× 100 6× 6× 2 0.44 3.63 0.65 7.77 0.19 20.98 1.40 22.56 0.07 8.20 10.62 81.13
solar plume 126× 126× 512 4× 4× 10 1.37 5.37 1.30 21.45 0.79 88.90 10.89 34.15 0.24 7.18 132.19 175.31
square cylinder 192× 64× 48 10× 3× 2 0.42 3.46 0.56 3.87 0.07 6.06 0.26 16.29 0.02 5.35 1.78 15.54
tornado 64× 64× 64 5× 5× 5 0.41 3.54 0.63 6.15 0.09 12.66 0.47 7.30 0.05 8.58 1.76 43.27
two swirls 64× 64× 64 5× 5× 5 1.33 3.84 2.23 19.94 0.53 88.11 8.60 67.18 0.30 34.54 85.46 103.23
average / / 0.69 4.29 0.99 15.59 0.40 59.29 5.24 25.81 0.19 10.01 59.75 96.93

variable-order network (denoted as VAR) [38]. The fixed-
order network (denoted as Fixed) [31] can be considered as a
reference because it represents the finest level of transitions
with the largest number of nodes. Both VAR and FlowHON
are approximating the behavior of Fixed with fewer nodes.
Since FON, VAR, and Fixed can be considered as special
solutions of D, A, and T, they can all benefit from our
transition optimization that updates T. Therefore, we addi-
tionally evaluate the optimized variants of FON, VAR, and
Fixed, referred to as FON+, VAR+, and Fixed+, respectively.
Specifically, we apply the transition optimization methods
described in Section 4.2 to their transition matrix T while
keeping their D and A unchanged.

Tasks. We evaluate the performance of these approaches
on three tasks: namely, particle density estimation, community
detection, and graph visualization. The particle density esti-
mation starts from a set of uniformly sampled particles and
uses the networks to estimate the number of particles over
blocks at each block step. This task quantitatively evaluates
the ability of a network to approximate the transition pat-
terns between blocks. The community detection partitions
the flow field into communities and examines the average
number of times a particle moves between two communi-
ties. This task quantitatively evaluates the effectiveness of
data partition based on different networks. A network is
favored if a particle is less likely to move between different
communities. This indicates that the communities are more
independent and that less task exchange or data loading is
needed in parallel particle tracing. Finally, we visualize the
networks using node-link diagrams to evaluate them qual-
itatively, aiming to see what kind of structural information
can be revealed by different networks.

Data sets and training configuration. We use twelve
steady flow data sets with different characteristics in the
experiment and summarize the data statistics and model
construction times in Table 1. The experiment with these
data sets are described in Section 5.2, Section 5.3, and
Section 5.4. We further include preliminary experiments
with two unsteady flow data sets, which will be discussed
in Section 5.5. For the steady fields, we select the block
dimension proportional to the data dimension so that each
block is roughly a cube. For each data set, we sample 15,000

particles for the network construction (10,000 are used for
training and 5,000 for validation) and 15,000 for testing. We
only use forward tracing to produce streamlines to avoid all
streamlines starting from boundary blocks. The streamlines
are then converted into a sequence of blocks. A special block
“−1” denotes the end of streamlines, either due to going out
of boundaries or reaching critical points. For the node gen-
eration, we use a difference threshold of 0.04 for hierarchical
clustering. We train each transition matrix in 100 epochs and
set the learning rate to 0.01 with a decay rate of 0.9 every
10 iterations. In our implementation, we use TensorFlow to
compute the derivatives and update the transition matrix.
We terminate the optimization if the matrix A does not
change for 4 consecutive iterations. More details on the
experimental setup, including dataset statistics, threshold
selection analysis, convergence testing of transition matrix
training, and impact of different block dimension settings,
are provided in Appendix B.

Construction time The third-order FlowHON construc-
tion requires 5.24 seconds for node initialization and 25.81
seconds for edge optimization, leading to a total construc-
tion time of 31.05 seconds on average, as shown in Table 1.
The construction time ranges from 7.77 seconds for the
tornado data set to 75.78 seconds for the two swirls data
set. Compared with the other approaches, it requires the
most time in the initialization stage, as an additional hier-
archical clustering is used. FON (0.69 seconds) and Fixed
(0.40 seconds) require the least time to initialize, as they
only connect the nodes based on statistics without any
further analysis. In terms of edge optimization, FON (4.29
seconds) is the fastest with the smallest number of nodes,
and Fixed (59.29 seconds) is the slowest with the most
number of nodes. FlowHON (25.81 seconds) is slower than
VAR (15.59 seconds) with similar amount of nodes. VAR
does not update the node aggregation and, therefore, does
not benefit from the iterative optimization scheme. Instead,
VAR performs a single iteration of optimization, leading to
a faster edge training time.

5.2 Particle Density Estimation
Experiment setup. For this task, we compute the three
matrices D, A, and T for each network and use Equation (2)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

TABLE 2: Average estimation error and network sizes of different network construction approaches. The estimation error
is given by KLD using Equation 1. ‘VAR’ denotes the variable-order network up to third-order, and ‘Fixed’ denotes the
third-order fixed-order network. The smallest estimation error for each data set among the third-order FlowHON, FON,
VAR, FON+, and VAR+ is highlighted in bold font. The network size denotes the number of nodes.

estimation error network size
other techniques with edge optimization ours other techniques ours

data set FON VAR Fixed FON+ VAR+ Fixed+ 3rd 2nd 4th FON VAR Fixed 3rd 2nd 4th
ABC 0.029 0.022 0.013 0.029 0.019 0.012 0.016 0.019 0.016 216 978 2180 641 469 735
Bénard 0.057 0.062 0.055 0.022 0.017 0.014 0.016 0.017 0.016 128 968 2260 412 361 556
combustion 0.024 0.021 0.017 0.022 0.014 0.014 0.017 0.018 0.016 141 761 1879 593 376 798
computer room 0.028 0.026 0.012 0.023 0.015 0.011 0.014 0.015 0.012 107 698 1631 593 348 747
crayfish 0.091 0.084 0.054 0.027 0.019 0.014 0.019 0.019 0.019 200 1486 3249 796 562 973
electron 0.006 0.008 0.006 0.007 0.008 0.007 0.006 0.007 0.006 125 348 1018 330 263 370
5 critical points 0.016 0.015 0.008 0.011 0.010 0.007 0.008 0.009 0.006 64 272 751 296 214 360
hurricane 0.030 0.037 0.017 0.019 0.015 0.010 0.010 0.013 0.011 72 354 880 289 247 393
solar plume 0.122 0.115 0.082 0.074 0.045 0.029 0.051 0.053 0.051 160 1009 2252 606 410 738
square cylinder 0.006 0.006 0.002 0.005 0.002 0.002 0.002 0.004 0.001 60 185 384 183 104 227
tornado 0.014 0.016 0.011 0.015 0.011 0.012 0.011 0.012 0.010 125 348 754 309 259 357
two swirls 0.077 0.059 0.052 0.026 0.019 0.019 0.019 0.021 0.016 125 904 2041 404 287 594
average 0.042 0.039 0.028 0.023 0.016 0.013 0.016 0.017 0.015 127 693 1607 454 325 570

Fig. 5: Estimation error of particle density (y-axis) over block steps (x-axis) for four data sets. The blue, green, orange,
and red curves show the accuracy of FON, VAR, Fixed, and FlowHON, respectively. Lighter-colored curves indicate the
estimation error of the respective original networks without edge optimization, while darker-colored curves show the
estimation error after applying our edge optimization. More contents are available in Appendix C.

to estimate the number of particles over blocks at each block
step. We use Equation (1) to calculate the estimation error for
the first eight block steps. The reported error is divided by
the number of particles, which converts the vector b back
to a probability distribution and normalizes the loss. The
initial positions of particles are evenly distributed in space
for all training, validation, and test data. The ground-truth
is obtained by tracing particles with the fourth-order Runge-
Kutta method and counting the particles in each data block.
Table 2 shows each approach’s average estimation error and
network size for each data set.

Impact of the order of network. We first compare the
networks of different orders using FlowHON. In general,
the estimation error decreases slightly and network size
increases with the increase of order. The third-order network
outperforms the second-order one for all data sets, and the
fourth-order network outperforms the third-order one for
most of the data sets, except for the hurricane data set.
But, in general, we find that the errors are similar across
different orders. To balance between the error and the size
of the network, we will use the third-order network for
comparison among different approaches.

Comparison with previous approaches. Our FlowHON
has smaller estimation errors than FON and VAR for all
data sets. The average error of FlowHON (0.016) is more
than 50% smaller than the average of FON (0.042) and VAR
(0.039). FlowHON also outperforms Fixed on most data sets
(ten out of twelve), except the ABC and computer room.

But the average improvement is smaller, with the average
error of Fixed being 0.028. It should be noted that the Fixed
achieves similar errors to FlowHON on many data sets, and
the difference of average errors majorly comes from a few
data sets, such as the Bénard, crayfish, solar plume, and two
swirls. For these data sets, Fixed has errors larger than 0.05.
For the solar plume data set, FlowHON also has an error of
0.051, but for all the other data sets, the errors are smaller
than 0.02. In terms of the size, FON has the smallest number
of nodes. For HON approaches, FlowHON is the smallest
on average (454.3), which is 34.4% smaller than VAR (692.6)
and 71.7% than Fixed (1606.6).

Impact of our edge optimization. All existing ap-
proaches benefit from our transition optimization procedure
in most cases. On average, the estimation errors reduce by
26.6% for FON, 45.9% for VAR, and 30.6% for Fixed. The
small size of FON may limit the power to precisely describe
the transition patterns, leading to the smallest improvement
with our optimization. On the contrary, Fixed may already
capture most transition patterns and has less room to im-
prove, compared with VAR. After the optimization, FON
still has the largest average error (0.023), and Fixed has the
smallest error (0.013). FlowHON (0.016) and VAR (0.016)
have similar errors, which are close to that of Fixed. But
FlowHON is 34.4% smaller in size and achieves smaller er-
rors on ten of the twelve data sets. Overall, we observe that
edge optimization is more crucial than the initialization of
nodes, and network size limits the enhancement achieved.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 6: Community detection results on four data sets. The x-axis denotes the average community size regarding the
number of data blocks, and the y-axis denotes the mean of community visits. For the same community size, smaller
means of community visits are preferred. Blue, green, and red curves denote the results of FON, VAR, and FlowHON,
respectively. Curves with lighter colors show the result of respective original networks without edge optimization, and
curves with darker colors show that of optimized networks. More contents are available in Appendix C.

While it may not significantly benefit certain datasets, such
as electron and tornado, it proves effective for most cases.
Note that developing a method to predict the impact of edge
optimization on the accuracy without actually performing it
is a promising direction for future work. Figure 5 shows
the error estimation over block steps for parts of the data
sets. We find that the estimation errors usually follow sim-
ilar patterns for all approaches, except those without edge
optimization (lighter-colored curves). We can confirm that
Fixed with our edge optimization usually delivers the best
accuracy, but ours is often close. This implies that existing
graph-based algorithms may be equipped with our network
for better performance. For example, random walks can
simulate the movement of particles in our network to de-
liver better time performance than Fixed and more accurate
estimation results than VAR and FON.

5.3 Community detection

Experiment setup. In parallel particle tracing, data-
parallelism and task-parallelism require effective flow field
partition to reduce the amount of particle exchanging or
data loading [45]. In this task, we apply a community
detection algorithm on FlowHON to examine its effective-
ness in guiding flow field partition. During community
detection, HO-nodes in the network are partitioned into
communities, with nodes in the same community depicting
similar flow patterns. This partitioning can guide parallel
particle tracing: in task-parallelism, each computing node
will handle a single community, while in data-parallelism,
communities will be loaded sequentially to the computing
node as needed. The actual data loaded during tracing
consists of the data blocks associated with the HO-nodes
in a community. To evaluate the partitioning results, we
trace a set of particles and measure two metrics. The first
is the mean of community visits, which records how often a
particle transitions between different communities. Specifi-
cally, we track the movement of a particle on HO-nodes and
increase the count when it moves from its current commu-
nity to a different one, including a previously visited one.
A count of one indicates that the particle remains within a
single community throughout tracing. This metric roughly
estimates the number of particle exchanges required in task-
parallelism, as each inter-community transition involves
communication between computing nodes. Similarly, it in-
dicates the number of data-loading operations needed when

data-parallelism is employed, as transitioning to a new
community requires loading its associated data blocks. The
second metric is the average community size, calculated as
the average number of data blocks per community. This
metric reflects the average amount of data to be loaded for
each computing node in both task- and data-parallelism.

We use InfoMap [30] to identify communities in the
network. It controls the resulting community resolution
with a parameter Markov-time. Generally, a higher Markov-
time results in a smaller number of communities with larger
sizes. To avoid trial-and-error effort to select this parameter,
we evenly sample the parameter from 0.5 to 3.5 with a step
of 0.1, and record the resulting average community sizes
and the mean of community visits using a sample set of
particles. The parameter values at the Pareto front are used
in the testing stage with new sets of particles. We compare
our approach with FON+ and VAR+. We do not compare
with Fixed+ as that may produce many small communities;
each contains a bundle of streamlines.

Community detection results. Figure 6 shows the av-
erage community sizes (in data blocks) versus the mean of
community visits for four data sets based on the test set of
particles. Given the resource limits, a preferred parameter
value should lead to the smallest mean of community visits
with an affordable community size. In Figure 6, we find
that all curves decrease monotonically when the average
community size increases. This indicates that the parameter
values collected from the sampling particles can provide
useful hints for the testing particles as well. Compared to
FON+ and VAR+, FlowHON produces smaller means of
community visits in most cases. An exception is the solar
plume data set, for which our FlowHON and VAR+ perform
similarly for smaller community sizes. But our FlowHON
rarely produces large communities, while VAR+ may pro-
duce much larger communities with a marginal decrease
in the mean of community visits. Additionally, the HON
approaches (i.e., FlowHON and VAR+) outperforms FON
for almost all cases.

Figure 7 illustrates an example of the data partitioning
results from different methods, all of which produce a
similar performance in terms of the mean of community
visits. In HON approaches, communities are detected at
the HO-node level, which means that a data block can
belong to multiple communities, leading to overlapping
subregions with different colors within the same block. We

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) (b) (c)
Fig. 7: Data partition based on community detection results
for the computer room data set. In each subfigure, we track
the movement of a particle (represented by a streamline)
across HO-nodes and color the corresponding streamline
segment according to the community the particle is cur-
rently passing through, with each community assigned a
unique color. Consequently, if a particle moves through
multiple communities, its streamline may exhibit multiple
colors. The top row displays the partition of the entire field,
while the bottom row zooms in on the regions highlighted
by the red rectangles. Columns (a)–(c) present the results
from FON+, VAR+, and FlowHON, respectively. Note that
colors do not correspond directly across multiple subfigures.

observe that HON approaches generally produce smaller
and overlapping communities. This is supported by quanti-
tative results: FlowHON yields an average community size
of 5.37 with a mean of community visits of 1.37; VAR+
generates an average size of 6.89 with a mean of visits
of 1.43; and FON results in larger communities with an
average size of 9.72 and a mean of visits of 1.55. It is
important to note that smaller and overlapping communi-
ties may require more computing nodes but demand fewer
resources per node, making them more compatible with
modern parallel computing hardware. Furthermore, HON’s
ability to subdivide blocks into irregular subregions allows
it to create “soft” boundaries of communities, by assigning
particles of different behaviors within boundary blocks to
different communities. These “soft” boundaries enable a
more natural partitioning of the flow field, adapting to flow
patterns rather than being constrained by predefined block
partitions. This is evident in Figure 7 (b) and (c), where flows
with similar patterns are depicted with consistent coloring.
In contrast, FON, limited by regular block partitioning, can
only produce “hard” boundaries among blocks that may
unnaturally separate a flow feature. This limitation is clearly
visible in the magnified region of Figure 7 (a), where the
flow is split between the purple and orange communities,
creating an artificial partition boundary.

Parallel particle tracing. We implement a simple parallel
particle tracing strategy using MPI to examine the perfor-
mance delivered by the traditional FON communities and
FlowHON communities. With this strategy, each computing
node loads the data blocks corresponding to one community
and processes the particles in that community. The compu-

ABC
Bén

ard

com
bu

stio
n

com
pu

ter
 ro

om
cra

yfi
sh

ele
ctr

on

fiv
e c

riti
cal

 po
int

s

hu
rric

an
e

sol
ar

plu
me

squ
are

 cy
lind

er

tor
na

do

tw
o s

wirls
0.0

0.2

0.4

0.6

0.8

1.0

blocks # particles exchanged time (s) # iterations

Fig. 8: Comparison of the parallel particle tracing perfor-
mance delivered by the FlowHON communities and FON
communities. The gray bars are the ratios of the average
sizes of FlowHON communities (in terms of the number of
blocks loaded) over those of FON communities. The blue
bars show the ratios of the numbers of particles exchanged
using FlowHON over those using FON. The red bars repre-
sent the ratios of timing (in seconds) using FlowHON over
that using FON. The green bars indicate the ratios of the
numbers of iterations required using FlowHON over those
using FON. For each metric, a bar lower than 1 indicates that
FlowHON outperforms FON, with a lower bar signifying a
better performance by FlowHON.

tation is performed in multiple iterations. In each iteration, a
computing node traces every particle assigned to it until the
tracing is finished or the particle goes out of the community.
After each iteration, all computing nodes exchange the
particles that are not completely traced. The particles are
sent to a destination computing node based on its HO-states.
The iteration repeats until all particles are fully traced. In
this experiment, we trace 1,000,000 particles for each flow
field and run the parallel tracing program on 750 processes
within a CPU cluster of 50 computing nodes, where each
node has an Intel Xeon E5-2692 CPU running at 2.2GHz
with 64GB memory. As the number of processes is larger
than that of communities, we duplicate a community for
multiple computing nodes in practice, ensuring that FON
and FlowHON consume similar computation resources for
a fair comparison. Figure 8 shows the comparison in four
aspects: the average number of blocks loaded by computing
nodes, the number of particles exchanged during tracing,
the total tracing time, and the number of iterations required
to complete the tracing process. As these four numbers vary
significantly across data sets, we use ratios between the
numbers of FlowHON and those of FON for easier compar-
ison. Here, the average number of blocks is measured from
the actual loading of computing nodes, which is different
from the average community size in Figure 6.

On average, FlowHON, when compared to FON, re-
quires 44.5% of the number of particles exchanged during
tracing and 48.5% of the number of iterations needed,
leading to a 75.1% of the whole tracing time under the
same computation resources. At the same time, FlowHON
loads fewer blocks to the computing nodes and incurs less
memory burden. However, we should note that the naive
parallel particle tracing does not fully leverage the power of
FlowHON. On average, the reduction in run time (24.9%) is
not as significant as the reduction in the number of particles

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

(a) (b)

(c) (d)

Fig. 9: Exploring the tornado data set using FlowHON (first
row) and FON (second row). The streamline segments cor-
responding to the selected nodes are shown. In subfigures
(a) and (c), the light blue spheres represent the nodes that
have not been selected.

exchanged (55.5%) and the number of iterations (51.5%).
This is due to the unbalanced workload across computing
nodes and iterations. In later iterations, several particles
traveling between a few computing nodes may delay the
entire computation. As the total amount of computation is
constant, the inefficient execution in these iterations reduces
the overall computation power utilization, leading to a
longer execution time. A more sophisticated parallel particle
tracing algorithm may avoid this by balancing the work-
load, and FlowHON can also be beneficial in this aspect
for two reasons. First, FlowHON provides a more accurate
estimation of the particle densities, as shown in Table 2.
This can give a more precise estimation of the number
of particles processed by each computing node. Second,
FlowHON distinguishes different patterns inside a block.
As the trajectories of particles may vary significantly in
length, FlowHON may facilitate a more accurate estimation
of the amount of computation required by different kinds of
particles. The improvement in these two aspects may boost
the performance of workload estimation, and, therefore,
enhance the workload allocation.

5.4 Visual Exploration

We further examine the constructed network utilizing the
graph layout derived from the LinLog energy model, a
widely adopted layout algorithm [24]. We implement a sim-
ple exploration system that supports brushing and linking
between the graph visualization and the streamline visual-
ization. Once a node is selected in the graph visualization,

the corresponding streamline segments related to that node
are visualized in the same color.

Tornado. The tornado data set is divided into 5 × 5 × 5
blocks. In Figure 9 (a) and (c), we find that both FlowHON
and FON exhibit five groups of nodes, corresponding to
the five vertical layers of the data set. Additionally, for
FlowHON, most of the five groups of nodes demonstrate
a finer level of structures. For example, the group of nodes
at the bottom-right corner can be easily divided into three
smaller groups, as shown in orange, green, and red in
Figure 9 (a). Their corresponding streamline segments lo-
cate at the top layer of the data set, where the segments
related to the red nodes occupy the central region, as shown
in Figure 9 (b). For other groups, we can also observe
some nodes that are visually separable from other nodes,
as colored in purple, brown, pink, and gray. These nodes
correspond to streamlines at the core of the tornado as
well. This shows that FlowHON captures the core of the
tornado. The network produced by FlowHON is consistent
with our understanding of the data set: only the particles
around the core of the tornado will move across vertical
block layers, while the particles at the outer layer of the tor-
nado will mostly move horizontally. The particle transitions
along the vertical core enhance the connections among HO-
nodes corresponding to the core of the tornado and drag
them away from other nodes at the same vertical layer.
In contrast, FON, constrained by rigid block partitioning,
struggles to distinguish different structures in the flow field.
This is most obvious for the top layer of blocks, where the
corresponding nodes in FON shows a single group with
mixed structures in the bottom-right corner of (c), while
the nodes in FlowHON form three groups distinguishing
different layers of flow in (a). This lack of distinction makes
it more challenging to interpret the flow field and accurately
identify finer-grained structures from the graph layout.
Furthermore, structures, such as the tornado core, may not
align with block boundaries, resulting in the core being less
distinctly revealed compared to FlowHON. Consequently,
FON provides a less detailed and structured summarization
of flow dynamics. Due to space constraints, we delegate
the visual exploration of another data set (solar plume) to
Appendix D for reference.

5.5 Preliminary Experiment with Unsteady Flows

Experiment setup. We experiment with FlowHON on two
unsteady flow data sets: the hurricane data set, and the
European Center for Medium Range Weather Forecasts
(ECMWF) data set. The hurricane data set contains 48
time steps (one per hour) over the Mexico Gulf, while the
ECMWF data set contains 44 time steps (one per month)
over the earth. Therefore, the hurricane data set depicts a
relatively short-term atmospherical flow in a local region,
while the ECMWF data set describes a long-term global
unsteady flow. For each time step, we generate 1,000 path-
lines starting from that time step. For the ECMWF data set,
we use a very small time interval between tracing steps
as the interval between the time steps is relatively large.
Therefore, the pathline may be similar to streamlines traced
at individual time steps for this data set. The pathlines are
first converted into sequences of blocks. Then, the networks

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a) (b) (c)

(d) (e) (f)
Fig. 10: Flow patterns related to a single block in the un-
steady ECMWF data set. (a) shows the HO-nodes contained
in the block highlighted in the red box. (b) to (f) show the
pathlines related to the five major HO-nodes in the block,
respectively. HO-nodes are generated by FlowHON, and the
particles flow from the narrower end to the broader end.

are constructed from the block sequences using exactly the
same scheme as that for steady flows.

Exploration results. For unsteady flow fields, the tra-
jectories of particles inside each data block may be even
more diversified. For clarity, we illustrate the direction of
pathlines to show that particles move from the narrower
end to the broader end. Figure 10 (a) shows the HO-nodes
contained in the selected block in red, while (b) to (d) depicts
the pathlines corresponding to five major HO-nodes. The
HO-nodes are listed in the order of the number of pathlines
related to them. The orange and red pathlines represent two
patterns that are similar in shape but move in opposite
directions. The green group corresponds to spirals going
outward from the selected block, while the purple group
corresponds to spirals moving between the selected block
and the neighbor on the south. The brown group represents
pathlines that split into two branches after entering the
block. These findings underscore the value of higher-order
dependencies in detecting flow patterns, supporting the
efficacy of FlowHON to represent flow fields.

Quantitative results. Figure 11 compares the perfor-
mance of different networks on particle density estimation
and community detection tasks. The first two rows show
results using all time steps for training and testing. In terms
of the density estimation, we find that networks with edge
optimization clearly outperform their original versions, es-
pecially for FON and VAR. For Fixed, the edge optimization
does not lead to an obvious improvement. This reveals that
the finest-level HO-states play a major role in the estimation,
while the optimization only recovers the information on
a simplified network with a reduced number of nodes.
For unsteady flows, we find that FlowHON outperforms
VAR+ and is very close to Fixed+. This demonstrates the
effectiveness of our node initialization and iterative update
scheme. As the ECMWF data set contains many periodic
flow patterns over the years, we further examine whether
data from previous years can be used to predict the tran-
sitions in later years. From the third row, we find that the
edge optimization still brings a performance gain, but the
estimation error clearly increases as the tracing goes on
for all approaches. This may indicate that the difference

(a) (b)
Fig. 11: Particle density estimation (a) and the community
detection (b) results for the unsteady flow fields. The first
row shows the results of the hurricane data set using all
time steps. The second row shows the results of the ECMWF
data set using all time steps for training and testing. The
third row shows the results of the ECMWF data set using
one year (12 time steps) for training and two years (24 time
steps) for testing.

between transition patterns of different years requires a
more sophisticated optimization technique. Regarding the
community detection result, we find that FlowHON outper-
forms FON+ and VAR+ as the particles visit fewer commu-
nities on average with smaller community sizes.

In Appendix E, we include an alternative version of
the visual exploration results with geo-reference and ex-
periment on more unsteady flow fields where we partition
the unsteady flow field into space-time blocks. Results are
consistent with those discussed in this section.

6 CONCLUSIONS AND FUTURE WORK

We propose FlowHON that describes particle transitions at
the block level using higher-order networks. We formulate
the higher-order network construction as an optimization
problem of three linear layers, corresponding to the distri-
bution from blocks to higher-order states, the aggregation
from higher-order states to higher-order nodes, and the tran-
sitions among higher-order nodes. Higher-order nodes sub-
divide the flow behaviors within individual blocks, leading
to better accuracy in describing particle transitions among
blocks. The higher-order network connects the higher-order
nodes and describes the transition patterns at a larger scale.
We assess our approach’s effectiveness by comparing it with

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

existing graph-based approaches from multiple aspects. We
experiment with both steady and unsteady flow fields on
three downstream tasks. Results show that FlowHON out-
performs existing approaches in most cases, and our edge
optimization approach could also help existing approaches
enhance their performance.

In the future, we would like to explore the following
directions. First, we would like to develop scalable paral-
lel particle tracing techniques on top of FlowHON. Our
simple parallel particle tracing platform with FlowHON
has demonstrated the potential of FlowHON in reducing
particle exchanges and tracing iterations. But workload bal-
ance in the platform remains an open question. We would
like to further explore whether the higher-order nodes will
provide more accurate information to estimate the workload
in each community as well. Based on the accurate tran-
sition pattern and workload estimation, we may be able
to develop a more sophisticated parallel tracing platform
for large-scale, efficient particle tracing. Second, we would
like to investigate the on-the-fly construction of FlowHON.
In this manner, the network undergoes dynamic updates
during particle tracing, thereby maintaining consistently
high performance as the tracing process progresses. This
may be useful for unsteady flow fields, assuming the tran-
sition patterns do not change abruptly. Third, we would
like to seek a better balance between the explainability of
our linear transformation-based approach and the power
of deep learning. Deep neural networks may be used to
identify meaningful higher-order states with even longer
dependencies.

ACKNOWLEDGEMENTS

This research was supported in part by the National Natural
Science Foundation of China through grant 62372484.

REFERENCES

[1] G. Aldrich, J. D. Hyman, S. Karra, C. W. Gable, N. Makedonska,
H. Viswanathan, J. Woodring, and B. Hamann. Analysis and
visualization of discrete fracture networks using a flow topology
graph. IEEE Transactions on Visualization and Computer Graphics,
23(8):1896–1909, 2017.

[2] H. Bhatia, S. Jadhav, P.-T. Bremer, G. Chen, J. A. Levine, L. G.
Nonato, and V. Pascucci. Flow visualization with quantified
spatial and temporal errors using edge maps. IEEE Transactions
on Visualization and Computer Graphics, 18(9):1383–1396, 2011.

[3] C.-M. Chen, B. Nouanesengsy, T.-K. Lee, and H.-W. Shen. Flow-
guided file layout for out-of-core pathline computation. In Pro-
ceedings of IEEE Symposium on Large Data Analysis and Visualization,
pages 109–112, 2012.

[4] C.-M. Chen and H.-W. Shen. Graph-based seed scheduling for
out-of-core FTLE and pathline computation. In Proceedings of IEEE
Symposium on Large Data Analysis and Visualization, pages 15–23,
2013.

[5] C.-M. Chen, L. Xu, T.-K. Lee, and H.-W. Shen. A flow-guided
file layout for out-of-core streamline computation. In Proceedings
of IEEE Symposium on Large Data Analysis and Visualization, pages
115–116, 2011.

[6] G. Chen, Q. Deng, A. Szymczak, R. S. Laramee, and E. Zhang.
Morse set classification and hierarchical refinement using conley
index. IEEE transactions on visualization and computer graphics,
18(5):767–782, 2011.

[7] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang. Efficient
morse decompositions of vector fields. IEEE Transactions on Visu-
alization and Computer Graphics, 14(4):848–862, 2008.

[8] L. Chen and I. Fujishiro. Optimizing parallel performance of
streamline visualization for large distributed flow datasets. In
Proceedings of IEEE Pacific Visualization Symposium, pages 87–94,
2008.

[9] F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlos. Are web
users really markovian? In Proceedings of International Conference
on World Wide Web, pages 609–618, 2012.

[10] D. Edler, L. Bohlin, and M. Rosvall. Mapping higher-order net-
work flows in memory and multilayer networks with infomap.
Algorithms, 10(4):112, 2017.

[11] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. Bischof.
Viracocha: An efficient parallelization framework for large-scale
CFD post-processing in virtual environments. In Proceedings of the
2004 ACM/IEEE Conference on Supercomputing, pages 50–50, 2004.

[12] H. Guo, W. He, S. Seo, H.-W. Shen, E. M. Constantinescu, C. Liu,
and T. Peterka. Extreme-scale stochastic particle tracing for uncer-
tain unsteady flow visualization and analysis. IEEE Transactions
on Visualization and Computer Graphics, 25(9):2710–2724, 2018.

[13] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng, and
J. Pan. Advection-based sparse data management for visualizing
unsteady flow. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2555–2564, 2014.

[14] J. Han, J. Tao, and C. Wang. Flownet: A deep learning framework
for clustering and selection of streamlines and stream surfaces.
IEEE transactions on visualization and computer graphics, 26(4):1732–
1744, 2018.

[15] T. Höllt, M. Hadwiger, O. Knio, and I. Hoteit. Probability maps for
the visualization of assimilation ensemble flow data. In Workshop
on Visualisation in Environmental Sciences, 2015.

[16] F. Hong, C. Lai, H. Guo, E. Shen, X. Yuan, and S. Li. Flda: Latent
dirichlet allocation based unsteady flow analysis. IEEE transactions
on visualization and computer graphics, 20(12):2545–2554, 2014.

[17] F. Hong, J. Zhang, and X. Yuan. Access pattern learning with
long short-term memory for parallel particle tracing. In 2018 IEEE
Pacific Visualization Symposium (PacificVis), pages 76–85, 2018.

[18] S. Kullback and R. A. Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[19] C.-J. Lin. Projected gradient methods for nonnegative matrix
factorization. Neural Computation, 19(10):2756–2779, 2007.

[20] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong. Ex-
ploring vector fields with distribution-based streamline analysis.
PacificVis, 13:257–264, 2013.

[21] J. Ma, C. Wang, and C.-K. Shene. FlowGraph: A compound
hierarchical graph for flow field exploration. In Proceedings of IEEE
Pacific Visualization Symposium, pages 233–240, 2013.

[22] J. Ma, C. Wang, C.-K. Shene, and J. Jiang. A graph-based interface
for visualanalytics of 3D streamlines and pathlines. IEEE Transac-
tions on Visualization and Computer Graphics, 20(8):1127–1140, 2013.

[23] B. Moloney, D. Weiskopf, T. Moeller, and M. Strengert. Scalable
sort-first parallel direct volume rendering with dynamic load
balancing. In Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization, 2007.

[24] A. Noack. Energy models for graph clustering. Journal of Graph
Algorithms and Applications, 11(2):453–480, 2007.

[25] B. Nouanesengsy, T. Lee, K. Lu, H. Shen, and T. Peterka. Parallel
particle advection and ftle computation for time-varying flow
fields. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pages 1–11,
2012.

[26] B. Nouanesengsy, T.-K. Lee, and H.-W. Shen. Load-balanced
parallel streamline generation on large scale vector fields. IEEE
Transactions on Visualization and Computer Graphics, 17(12):1785–
1794, 2011.

[27] S. Oeltze, D. J. Lehmann, A. Kuhn, G. Janiga, H. Theisel, and
B. Preim. Blood flow clustering and applications invirtual stenting
of intracranial aneurysms. IEEE transactions on visualization and
computer graphics, 20(5):686–701, 2014.

[28] T. Peterka, R. Ross, B. Nouanesengsy, T. Lee, H. Shen, W. Kendall,
and J. Huang. A study of parallel particle tracing for steady-state
and time-varying flow fields. In Proceedings of IEEE International
Parallel Distributed Processing Symposium, pages 580–591, 2011.

[29] W. Reich and G. Scheuermann. Analysis of streamline separation
at infinity using time-discrete markov chains. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2140–2148, 2012.

[30] M. Rosvall and C. T. Bergstrom. Maps of random walks on
complex networks reveal community structure. Proceedings of the
National Academy of Sciences, 105(4):1118–1123, 2008.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

[31] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and
R. Lambiotte. Memory in network flows and its effects on spread-
ing dynamics and community detection. Nature Communications,
5(1):1–13, 2014.

[32] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási. Limits of pre-
dictability in human mobility. Science, 327(5968):1018–1021, 2010.

[33] T. Takaguchi, M. Nakamura, N. Sato, K. Yano, and N. Masuda. Pre-
dictability of conversation partners. Physical Review X, 1(1):011008,
2011.

[34] J. Tao, J. Ma, C. Wang, and C.-K. Shene. A unified approach to
streamline selection and viewpoint selection for 3d flow visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
19(3):393–406, 2012.

[35] J. Tao, C. Wang, N. V. Chawla, L. Shi, and S. H. Kim. Semantic flow
graph: A framework for discovering object relationships in flow
fields. IEEE Transactions on Visualization and Computer Graphics,
24(12):3200–3213, 2017.

[36] J. Tao, J. Xu, C. Wang, and N. V. Chawla. HoNVis: Visualizing and
exploring higher-order networks. In Proceedings of IEEE Pacific
Visualization Symposium, pages 1–10, 2017.

[37] C. Wang and J. Tao. Graphs in scientific visualization: A survey.
Computer Graphics Forum, 36(1):263–287, 2017.

[38] J. Xu, T. L. Wickramarathne, and N. V. Chawla. Represent-
ing higher-order dependencies in networks. Science Advances,
2(5):e1600028, 2016.

[39] L. Xu and H.-W. Shen. Flow web: A graph based user interface for
3D flow field exploration. In Proceedings of IS&T/SPIE Conference
on Visualization and Data Analysis, volume 7530, page 75300F, 2010.

[40] H. Yu, C. Wang, and K. Ma. Parallel hierarchical visualization of
large time-varying 3D vector fields. In Proceedings of ACM/IEEE
Conference on Supercomputing, pages 1–12, 2007.

[41] H. Yu, C. Wang, C.-K. Shene, and J. H. Chen. Hierarchical
streamline bundles. IEEE Transactions on Visualization and Computer
Graphics, 18(8):1353–1367, 2011.

[42] J. Zhang, H. Guo, F. Hong, X. Yuan, and T. Peterka. Dynamic
load balancing based on constrained K-D tree decomposition for
parallel particle tracing. IEEE Transactions on Visualization and
Computer Graphics, 24(1):954–963, 2018.

[43] J. Zhang, H. Guo, and X. Yuan. Efficient unsteady flow visualiza-
tion with high-order access dependencies. In Proceedings of IEEE
Pacific Visualization Symposium, pages 80–87, 2016.

[44] J. Zhang, H. Guo, X. Yuan, and T. Peterka. Dynamic data repar-
titioning for load-balanced parallel particle tracing. In Proceedings
of IEEE Pacific Visualization Symposium, pages 86–95, 2018.

[45] J. Zhang and X. Yuan. A survey of parallel particle tracing
algorithms in flow visualization. Journal of Visualization, 21(3):351–
368, 2018.

Nan Chen is currently a Ph.D. student at the
Johns Hopkins University. He received a B.E.
degree in computer engineering from Sun Yat-
sen University in 2020. His research interests
are scientific visualization, multivariate data ex-
ploration, and graph machine learning.

Zhihong Li is a master student at Sun Yat-sen
University. He received a B.E. degree in com-
puter science from Liaoning University in 2020.
His research interests are flow visualization and
deep learning for scientific visualization.

Jun Tao is an associate professor of computer
science at Sun Yat-sen University and National
Supercomputer Center in Guangzhou. He re-
ceived a Ph.D. degree in computer science from
Michigan Technological University in 2015. Dr.
Tao’s major research interest is scientific visu-
alization, especially on applying information the-
ory, optimization techniques, and deep learning
to flow visualization and multivariate data explo-
ration.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

APPENDIX A
DISCUSSIONS ON EXISTING HIGHER-ORDER NET-
WORKS

Conventional network models are usually based on the
assumption of Markovian behavior, meaning that the tran-
sition probability on a specific node only depends on its
current state. Recent work has empirically demonstrated
that this assumption is insufficient to model the real-world
transitions [9], [32], [33]. Rosvall et al. [31] proposed a
second-order Markov model composed of memory nodes
that encode the currently visited node as well as a previ-
ously visited node. Xu et al. [38] put forward a higher-order
network (HON) with nodes of variable orders. This ap-
proach only generates necessary higher-order nodes which
behave significantly differently from their respective lower-
order nodes. Edler et al. [10] abstracted different forms of
higher-order networks as a sparse memory network that
distinguished physical nodes from state nodes encoding
higher-order dependencies, and employed a generalized
map equation algorithm on it to detect overlapping module
patterns. The higher-order network is also used in visualiza-
tion approaches to examine long-term dependencies. Tao et
al. [36] developed a visual analytic framework of HON that
allows users to examine higher-order Markov dependencies
interactively at different levels of granularity.

These higher-order networks are generally categorized
into two types: the fixed-order [31] and variable-order
networks [38]. Figure 1 (a) shows a portion of a fixed-
order network. In this network, each node is a third-order
state, and each edge represents the transition probability
between two corresponding states. Transition probabilities
are initially recorded between a higher-order state and an
individual event, and later expanded into transitions be-
tween two states of the same order. Note that the higher-
order state provides enough previous history to expand an
individual event to a state of the same order or one order
higher. For example, the transition A|B.C → F is expanded
into A|B.C → F |A.B. The fixed-order network provides
complete dependency information up to a fixed order, but
its size may increase exponentially with the order.

Figure 1 (b) illustrates a variable-order network, which
contains nodes of various orders to reduce the unnecessary
higher-order nodes. A higher-order node is included in the
variable-order network only if its transition behavior differs
from the corresponding lower-order node. The behavior
difference is measured between the transition probability
distribution of a higher-order node and that of the cor-
responding lower-order node. The Kullback-Leibler diver-
gence (KLD) [18] is used to calculate the difference between
two distributions based on information theory. For example,
in Figure 1 (b), the two third-order nodesA|B.D andA|B.E
have similar distributions to a second-order node A|B,
while the third-order node A|B.C has a different distribu-
tion. In this case, A|B.D and A|B.E are considered to be
redundant, as they provide no additional information than
A|B. Therefore, the variable-order network will includeA|B
to represent both A|B.D and A|B.E, and include A|B.C to
preserve its unique transition behavior.

However, the variable-order network reduces the size
from the fixed-order network based on handcrafted rules,

which does not guarantee optimal performance for three
reasons. First, the construction process only considers the
similarities between states of different orders but does not
take into account the similarities between states of the
same order. As a result, it fails to combine similar states
corresponding to different lower-order nodes. Second, the
transition probability distribution of the lower-order state
may not be the most appropriate one to represent all states
reduced to it. For example, in Figure 1, A|B represents
A|B.D and A|B.E, but its distribution includes the transi-
tions through A|B.C as well, which may lead to inaccurate
probabilities. Third, both the variable-order and fixed-order
networks estimate the transition probabilities by counting
transitions over the entire history, but ignore the differences
residing in the transition patterns due to the change of
particles’ spatial distribution.

To deal with the above mentioned problems, we propose
a three-layer construction pipleline to build FlowHON. Our
three-layer construction model can be seen as a generaliza-
tion of both the fixed-order [31] and variable-order [38] net-
works. The fixed-order network represents each HO-state
of a fixed-order as a node, and the probability of starting
from a certain node is given by the sampled data. This
can be seen as using our approximate assignment (which
will be discussed later) to produce the distribution matrix
D and using an identity matrix as the aggregation matrix
A. The variable-order network always starts from a first-
order state and generates the history in random walks on
the network. This can be seen as a distribution matrix D,
where Di,j = 1 implies that the i-th HO-state is a first-order
one. The variable-order network uses HO-states of different
orders as nodes. This can be seen as using a handcrafted rule
to produce the aggregation matrix A, which aggregates HO-
states of higher orders into the corresponding lower-order
ones. Both the fixed-order and the variable-order networks
estimate the transition probabilities using the sampled data,
which can be seen as the computation of T. Therefore, these
two network construction algorithms can be special solu-
tions to our problem. Ideally, our approach should produce
the optimal performance given the same network size.

A|B,C

A|B,D

A|B,E

G|A,B

F|A,B

H|A,B

F G H

F G H

F G H

…

trans. prob.

A|B,C

A|B G|A,B

F|A,B

H|A,B
A|B,D A|B,E

F G H

F G H

trans. prob.

…

F G H F G H

(a) (b)

Fig. 1: Existing higher-order network construction algo-
rithms. (a) shows a fixed-order network [31], where all
nodes share a fixed order. (b) shows the corresponding
variable-order network [38], where similar higher-order
nodes are merged into a lower-order node.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

APPENDIX B
EXPERIMENT CONFIGURATIONS AND TRAINING
SPECIFICS

B.1 Experimental Environment

We conduct the method construction on a server running
CentOS Linux 7 (Core), equipped with a 2.10GHz Intel Xeon
Gold 6230R processor, 512GB of RAM, and a single NVIDIA
A100 Tensor Core GPU featuring 80GB of GPU memory. The
software used includes Python 3.8.19, Tensorflow 2.11.0, and
CUDA 11.6.

B.2 Network Size and GPU Memory Consumption

To offer practical guidance on selecting appropriate net-
work sizes, we conducted experiments on an unsteady
flow dataset to estimate the GPU memory consumption
of different approaches under varying time step settings.
Specifically, we evaluated the ECMWF dataset with 500 spa-
tial blocks, testing configurations with 10 and 20 time steps.
Under the setting of 10 time steps, the generated fixed-order
network (Fixed) consists of approximately 18, 500 nodes,
requiring around 25 GB of GPU memory for edge opti-
mization. In contrast, the constructed FlowHON consists
of approximately 7, 200 nodes, requiring about 14 GB of
GPU memory for network construction. When changing
the setting to 20 time steps, the size of Fixed grows to
approximately 28, 800 nodes, with GPU memory consump-
tion rising to 59 GB for edge optimization. Meanwhile,
FlowHON expands to approximately 10, 800 nodes, requir-
ing around 19 GB of GPU memory for network construc-
tion. Additionally, we acknowledge that the exact memory
consumption and computational efficiency highly depend
on hardware configurations and software library versions.
For example, in our comparison of implementations using
PyTorch and TensorFlow, we observed that TensorFlow
sometimes requires less GPU memory but at the cost of
higher CPU usage and significantly increased computation
time for large networks. We hypothesize that TensorFlow’s
automatic memory management may offload certain com-
putations to the CPU to conserve GPU memory, albeit at the
expense of efficiency.

B.3 Justifications on difference threshold selection

In implementation, we empirically use a difference thresh-
old of 0.04 for the hierarchical clustering based on our
observations on the distribution of differences. As shown in
Figure 2, the difference value 0.04 is located at the “elbow”
of the difference distribution, meaning there is limited room
for node compression beyond this point.

B.4 Convergence Analysis of Transition Matrix Training

In this section, we examine the learning dynamics of train-
ing the transition matrix. We do this by plotting the loss (as
defined in Eq. 5) at each training epoch for the twelve steady
flows, as shown in Figure 3. Our analysis reveals that the
optimization of the transition matrix reaches convergence
by the end of training across all data sets.

Fig. 2: The difference distribution of all data sets. The x-
axis represents the difference range. The Y-axis represents
the percentage of difference values in a range. The box plot
shows the 25%, 50%, and 75% quantiles of the percentage
over data sets. The blue dashed line shows the threshold
used in our experiment.

Fig. 3: The loss dynamic (y-axis) over training epochs (x-
axis) for each of the twelve steady flows.

B.5 Analysis of the impact of different seeding strate-
gies

Let P denote the distribution of particles where each ele-
ment P [i] represents the number of particles in block i. Let
Q denote the probability of sampling a seed in each block.
The original sampling method uniformly samples seeds in
the space Q[0] = Q[1] = · · · = Q[N − 1], and traces them
forward. This seeding strategy might lead to imbalanced
particle distribution among blocks as tracing goes on. To
balance the particle distribution, we devise another seed-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

(a) (b) (c)

Fig. 4: Experiment result in scenario 1 where the training
and testing data are both generated by the new sampling
method. Results are from ABC, hurricane, and two swirls
data sets. Columns (a) to (c) denote using training sets with
5,000, 10,000, and 20,000 samples.

(a) (b) (c)

Fig. 5: Experiment result in scenario 2 where the training
and testing data are generated by the original sampling
method and the new sampling method, respectively. Results
are from ABC, hurricane, and two swirls data sets. Columns
(a) to (c) denote using training sets with 5,000, 10,000, and
20,000 samples.

ing strategy. This new strategy consists of multiple stages,
each of which generates 500 streamlines. Let Pj denote the
current particle distribution at the beginning of stage j. In
the first stage, the distribution P0 is assumed to be uniform.
During simulation, the probability of sampling a seed in
block i is related to the current particle distribution in it:

Qj [i] ∝ exp(N −N · Pj [i])

(a) (b) (c)

od

Fig. 6: Experiment result in scenario 3 where the training
and testing data are generated by the new sampling method
and the original sampling method, respectively. Results are
from ABC, hurricane, and two swirls data sets. Columns
(a) to (c) denote using training sets with 5,000, 10,000, and
20,000 samples.

where N is the total number of blocks in the flow field.
Overall, this new strategy will iteratively adjust particle
distributions to ensure a more balanced distribution. We
would like to evaluate the model’s performance when using
different strategies to generate training and testing data. We
consider three scenarios that are described as follows.

• Use the new sampling method to generate the train-
ing data as well as test data.

• Use the original sampling method and the new
method to generate the training data and test data,
respectively.

• Use the new method and the original sampling
method to generate the training data and test data,
respectively.

For each scenario, we use 15,000 samples for testing, and
training data sets are to 5,000, 10,000, or 20,000 samples. The
results in these three scenarios are shown in Figure 4, 5, and
6, respectively. These results show that all networks eval-
uated in the experiment are stable under different seeding
strategies for sampling training and testing data. Among the
three data sets, FlowHON consistently outperforms FON
and VAR, achieving a comparable performance to Fixed+.

B.6 Impact of different block dimensions.
In this subsection, we analyze how different block dimen-
sion settings impact the network generation process and the
particle density estimation task. For each dataset, we ex-
perimented with three grid configurations: the original grid
partition used in the main paper, a sparser grid (referred
to as the sparse grid), and a denser grid (referred to as the
dense grid). For each data set, the sparse grid is configured
to have roughly half the number of blocks compared to the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

TABLE 1: Comparison of performance across various grid densities, including construction time in seconds, network size
based on the number of nodes, and the estimation error in particle density estimation. The result of each method represents
an average over 12 steady flow fileds under specific grid settings. Note that for FON, the network size corresponds to the
number of blocks in the grid partition.

construction time (s) network size estimation error
method sparse original dense sparse original dense sparse original dense

FON 0.45 0.69 1.30 63 127 427 0.034 0.042 0.049
VAR 0.67 0.99 1.93 370 693 1842 0.033 0.039 0.048
Fixed 0.30 0.40 1.47 871 1607 4308 0.022 0.028 0.035
FON+ 3.87 4.97 10.44 63 127 427 0.021 0.023 0.030
VAR+ 7.32 16.58 94.19 370 693 1842 0.012 0.016 0.028
Fixed+ 18.01 59.68 508.48 871 1607 4308 0.009 0.013 0.022

ours 20.32 31.05 73.44 324 454 868 0.012 0.016 0.027

Fig. 7: Comparison of performance across various grid densities in crayfish data set. (a) shows how the network size change
in different grid densisties for different methods. (b) shows how the construction time change. (c) and (d) are the estimation
error of particle density over block steps under sparse grid and dense grid, respectively.

original, while the dense grid is set to have approximately
three times the number of blocks. For each grid configu-
ration, we applied different network construction methods
and evaluated their performance in particle density estima-
tion, while keeping all other settings unchanged. The results
are summarized in Table 1, with detailed outcomes for the
crayfish dataset provided in Figure 7.

In terms of network construction time, we observed that
grid density has a more significant impact on methods with
edge optimization, particularly Fixed+. This is likely due to
the fact that the network size of Fixed increases rapidly as
grid density increases, resulting in a larger number of edges
that need optimization. For variable-order methods such
as VAR+ and FlowHON, the increase in construction time
is more moderate, as these methods will group redundant
HO-states into HO-nodes to improve efficiency. Notably, at
the dense grid, FlowHON achieves a significantly smaller
network size compared to VAR, demonstrating the effec-
tiveness of our HO-state grouping strategy. As grid density
increases, the flow field becomes partitioned at a finer
level, making flow patterns within each block simpler and
reinforcing the importance of advanced grouping strategies
to reduce redundant HO-states. Regarding the estimation
error, we found that the performance gap between FON
and higher-order networks decreases as the grid becomes
denser. This is expected as denser grids result in simpler
flow patterns within each block. Across all block dimension
settings, our method consistently achieves a performance
closest to Fixed+, while maintaining a much smaller net-
work size.

TABLE 2: Average estimation error across 12 data sets
when using different distance metrics to measure distance
between HO-states.

distance metrics estimation error
Euclidean 0.016
KL-Divergence 0.015
Cosine similarity 0.018

B.7 Impact of different distance metrics

In this subsection, we investigate the impact of different
distance metrics used to calculate the distance between
HO-states. Specifically, we evaluate three metrics: Euclidean
distance (used in the main paper), KL-Divergence, and
cosine similarity. For each metric, we constructed FlowHON
and tested it on the particle density estimation task on 12
steady flow data sets. The results, presented in Table 2,
indicate that the overall model performance is not highly
sensitive to the choice of distance metric. Among the three,
cosine similarity delivers the lowest performance, while
KL-Divergence performs slightly better than the Euclidean
distance, which was used in our main paper.

APPENDIX C
MORE RESULTS ON STEADY FLOW

C.1 More results on particle density estimation

Figure 8 shows the error estimation over block steps for the
other data sets.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 8: Estimation error of particle density (y-axis) over block steps (x-axis) for eight data sets. The blue, green, orange,
and red curves show the accuracy of FON, VAR, Fixed, and FlowHON, respectively. Curves with lighter colors show the
estimation error of respective original networks without our edge optimization, and curves with darker colors show that
of optimized networks.

Fig. 9: Community detection results on eight data sets. The x-axis denotes the average community size regarding the
number of blocks, and the y-axis denotes the mean of the number of communities visited. For the same community
size, smaller means of community visits are preferred. Blue, green, and red curves denote the results of FON, VAR,
and FlowHON, respectively. Curves with lighter colors show the result of respective original networks without edge
optimization, and curves with darker colors show that of optimized networks.

C.2 More results on community detection

Figure 9 shows the community detection results for the
other data sets.

APPENDIX D
VISUAL EXPLORATION ON MORE DATA SETS

Solar Plume. The solar plume data set is partitioned into
4 × 4 × 10 data blocks. In Figure 10 (a), we find that the
nodes in FlowHON form eight distinct groups in the graph
layout. The four groups at the center (red, orange, gray, and
light purple) correspond to the four sectors of the crown of
the solar plume. The node groups and the sectors follow
the same order (as indicated by the black dashed arrow),
preserving the neighboring relations between groups. The

node groups at the outer ring (green, purple, brown, and
yellow) correspond to the tail of the solar plume. They also
follow the same order, and each group stays close to the
corresponding group in the inner layer. In Figure 10 (c), FON
does not distinguish the four sectors at the crown clearly.
Instead, the upper and lower blocks form two groups of
nodes (blue and orange) in the graph. We can see two clear
paths in the upper region of the graph, corresponding to the
blocks in the front. We can also see a path in the bottom-left
region, but the fourth path is not clearly visible.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(a) (b)

(c) (d)
Fig. 10: Solar plume data set: visualization of networks
and streamline segments related to selected node groups
within the solar plume data. The first row illustrates the
network and streamline segments of FlowHON, while the
second row depicts those of FON. The black dashed arrows
illustrate the order correspondence between node groups
and sectors within the flow field, from which we can tell
that the layout of FlowHON preserves more meaningful
neighboring relations between node groups for visual ex-
ploration. The light blue spheres in subfigure (a) represent
nodes that have not been selected.

APPENDIX E
MORE RESULTS ON UNSTEADY FLOW

E.1 Visual Exploration with Geo-Reference
Figure 12 is an alternative version of Figure 10 with geo-
reference.

E.2 Quantitative Results on 4 Unsteady Flows with
More General Partitioning Strategies
In Section 5.5 of our preliminary experiments, we focused
on partitioning unsteady flow fields solely along spatial di-
mensions. Pathlines generated at each timestep were treated
as streamlines for subsequent processing. In this part, we
conduct further experiments on unsteady flow fields to
complement the preliminary experiments. Specifically, we
partition the unsteady flow fields along both spatial and
temporal dimensions, creating space-time blocks for the
network construction. To enhance the comprehensiveness
of our evaluation, we include two additional data sets, vsfs9
and VEC. Table 3 provides a summary of the statistics for
the unsteady flow fields used, along with details of their
partitioning. The construction procedure applied to these
unsteady flow fields is identical to that used for steady
flows, with space-time blocks being treated analogously to
spatial blocks.

Figure 11 demonstrates the performance of different net-
works in particle density estimation and community detec-
tion tasks. The patterns observed align with those discussed

TABLE 3: Statistics of the unsteady flow fields used in the
experiment. Space-time block dimensions show the num-
bers of blocks along each axis, where the last axis represents
time.

data set data dimension space-time block dimension
vsfs9 40× 56× 68× 36 6× 8× 8× 6
VEC 147× 147× 43× 120 8× 8× 1× 6
ECMWF 480× 241× 15× 44 15× 10× 1× 12
hurricane 500× 500× 100× 48 10× 10× 1× 4

in previous sections. For density estimation, our proposed
edge optimization enhances performance for both FON and
VAR by a large margin. Across the four unsteady flows ex-
amined, FlowHON consistently surpasses FON+ and VAR+,
showing comparable results to Fixed. In community detec-
tion, FlowHON consistently outperforms FON+ and VAR+
across all datasets, characterized by particles visiting fewer
communities with reduced community sizes. These findings
highlight the adaptability and effectiveness of FlowHON
and its edge optimization component in modeling more
complicated patterns in unsteady flow fields.

APPENDIX F
DOMAIN EXPERT FEEDBACK

We invite Dr. X, an expert in fluid dynamics, to evaluate the
effectiveness of FlowHON. Dr. X has more than ten years
of experience in this field, and her recent work focuses on
developing scalable computational tools for various scien-
tific domains, including atmospheric science. The evaluation
was performed in two stages. In the first stage, Dr. X was
introduced to the basic concepts of FlowHON and the ex-
ploration interface using the tornado data set. In the second
stage, Dr. X used the interface to explore the ECMWF data
set and compared the FON and FlowHON on it, as this data
set is closely related to his application of interest.

Dr. X stated that “FlowHON is useful in discovering
features as the complex flow regions often seem to be denser
than other regions.” This may be related to the fact that
FlowHON will produce more HO-nodes in the blocks where
particles exhibit more diverse transition patterns. He further
commented that “The higher-order nodes separate the fea-
ture patterns from the other flow lines, which is useful to
study the specific physical phenomenon. For example, in
the atmospherical data sets, the spiraling pattern, such as
typhoons, is often studied. FlowHON enables the selection
of this kind of features, but in FON, this pattern is hidden
in the laminar flows and cannot be selected.” This is indeed
consistent with the findings in our exploration. However,
in terms of the overall structure of the graphs, Dr. X stated
that “The graph visualization of the two networks (FON and
FlowHON) reveal similar structures.”

Dr. X also mentioned some desired features that may
be supported by FlowHON in the future. She stated that
“When an HO-node is selected, it will be more convenient
if some functions are provided to explore its neighbors
in the graph. For the atmospherical science, this may be
helpful to study the water vapor transmission, the pollution
diffusion, and the energy circulation.” As FlowHON tends
to provide a more deterministic transition behavior among

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b)

Fig. 11: The particle density estimation (a) and the commu-
nity detection (b) results for the unsteady flow fields. The
unsteady flow fields are partitioned along spatial-temporal
dimensions. The x-axis in column (a) represents the space-
time block step, while that in column (b) represents the av-
erage community size defined by the number of space-time
blocks. The y-axis in column (a) represents the estimation
error of particle density, while that in column (b) represents
the average number of communities visited. The first row
to the fourth row illustrates the result of the vsfs9, VEC,
ECMWF, and hurricane data sets, respectively. Note that
we do not apply edge optimization to Fixed as the GPU
memory consumption exceeds our GPU’s memory capacity.

nodes, we feel that this is a promising direction to explore.
For example, starting from one node, FlowHON can better
estimate the regions that will be influenced by the selected
node. She also mentioned that “FlowHON is an interesting
idea to handle the dependencies in computation. It will be
interesting to see whether FlowHON can work with the
computation tools we are developing.”

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a) (b) (c)

(d) (e) (f)

Fig. 12: Flow patterns related to a single block in the unsteady ECMWF data set. (a) to (d) show the pathlines related to the
four major HO-nodes in the block highlighted in red box, respectively. Red arrows in (a) and (b) point out the direction of
pathlines. (e) and (f) shows the pathlines of different HO-nodes at the time step 2 and 8, respectively. The HO-nodes are
produced by our FlowHON approach.

	Introduction
	Related Work
	Higher-order Network for Flow
	Our Construction Algorithm
	Problem formulation
	Optimization

	Results and Discussion
	Experiment Configuration
	Particle Density Estimation
	Community detection
	Visual Exploration
	Preliminary Experiment with Unsteady Flows

	Conclusions and future work
	References
	Biographies
	Nan Chen
	Zhihong Li
	Jun Tao

	Appendix A: Discussions on existing higher-order networks
	Appendix B: Experiment Configurations and Training Specifics
	Experimental Environment
	Network Size and GPU Memory Consumption
	Justifications on difference threshold selection
	Convergence Analysis of Transition Matrix Training
	Analysis of the impact of different seeding strategies
	Impact of different block dimensions.
	Impact of different distance metrics

	Appendix C: More results on steady flow
	More results on particle density estimation
	More results on community detection

	Appendix D: Visual Exploration on More Data Sets
	Appendix E: More Results on Unsteady Flow
	Visual Exploration with Geo-Reference
	Quantitative Results on 4 Unsteady Flows with More General Partitioning Strategies

	Appendix F: Domain Expert Feedback

